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Pointers to course material OK

Material for distributed systems review, and material
for fault tolerance concepts:

- The book Distributed Systems For System Architects, Paulo
Verissimo and Luis Rodrigues, 2001, Kluwer Academic Publishers.
http://www.navigators.di.fc.ul.pt/dssa

- Further reading for these topics is described in the book, at end
of each chapter.

Material for the newer /ntrusion folerance domain, is
available from the University of Lisbon web site:

- Intrusion-Tolerant Architectures: Concepts and Desigh
Verissimo, P., Neves, N., and Correia, M. In: Architecting
Dependable Systems. Springer-Verlag LNCS 2677 (2003). Ext.
version, Tech. Rep. DI/FCUL TR03-5, Dept. of Informatics, Univ.
of Lisboa (2003). http://www.navigators.di.fc.ul.pt/it/index.htm

A—— e
Course Structure

+ Introduction to distributed systems: foundations, main
paradigms and models

Distributed fault tolerance foundations and paradigms
+ Models and systems for distributed fault-tolerant

computing

Case study: making VP'63 distributed and dependable

* Introduction to the fundamental concepts of intrusion
tolerance
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Computing Conference, October 2006, Coimbra, Portugal , pp 39-46
L. Alvisi, D. Malkhi, E. Pierce, M. K. Reiter, and R. N. Wright, DK‘namic Byzantine
guorum systems," in Proc. Int'l Conference on Dependable Sys and Networks (FTCS-
0/DCCA-8), pp. 283-292, 2000.

Y. Amir et al. Secure group communication in asynchronous networks with failures:
Integration and experiments. In Proc. The 20th IEEE Intern. Conference on Distributed
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Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru, J. Olsen, and D.
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of the Int. Confer. on Dependable Systems and Networks, pages 105-114, June 2006.
G. Ateniese, M. Steiner, 6. Tsudik: Authenticated group key agreement and friends. In
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Introduction
to
Distributed Systems

Characteristics of Distributed
Systems

- independent failures

+ communication is unreliable

) * has variable delays

* interconnected - speed and bandwidth are
by a network » moderate

- investment costs often lower
than mainframes

* management costs are higher
* partial ordering of events only
- difficult o assess global state

* multiple computers

* sharing state

PE[Tin Distribyied Systems @K

What is a distributed system?

A computer network is not a distributed system

» computer network

- infrastructure serving a set of computers
interconnected through communication links of
possibly diverse media and topology, and using a
common set of communication protocols.

* distributed system

- system composed of several computers which
communicate through a computer network, hosting
processes that use a common set of distributed
protocols to assist the coherent execution of
distributed activities.

PP~ © 2002-08 Paulo Verissimo - Al fignts reserved, ho unauthorized reproduction in any form gl 1.2

S of
Centralized versus Distributed Systems

+ Centralized : + Distributed :
- Accessibility - Scalability, helped by:
*+ to resources and info + geographical scope
- Homogeneity - heterogeneity
- of procedures and technologies * modularity
- Manageability - Sharing:

- single, domain + of common resources and info
- Consistency - Reliability and availability, due to:
+ redundancy and replication
+ graceful degradation
+ failure independence
- Security, due to:
+ vulnerability reduction

- Low cost factor

+ global state

- Security, due to:
+ threat reduction
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Decentralization

+ Decentralization /s not distribution
- decentralization is local autonomy of means and procedures,
based on local control points that contribute to the goals of a
wider structure
« distribution adapts computing infrastructure o a
decentralized model of activity
- strategy for decentralization?
- decentralize control, integrate and coordinate activities
- supply coherent system view to all loci of control
- common knowledge

- secure decentralized coordination of actions
- distributed algorithmic
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Remote Access Architectures:
(a) Plain Telephone Line; (b) Data Network

Sy Network
| s Service
] Provider

Terminal
L 4

1.7
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Distributed Systems Evolution

ARCHITECTURES
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Distributed File and Memory Ar'chi1'ec1.(-’>K

(a) (b)
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LT in Distribuiod Sysiomsd ,
Diskless and X-Terminal Architect. of
(on disk and/or CPU servers)

Data

!b Network

®)
1.9
P in DSt 5)stomag
Client-Server Architectures oK
(Clients became "fat")
Sl
a DL
Data
% Nolwork
1.10

P_ELTin Distribyfed Svstemsd o
3-tier Client-Server or Thin-Client Ar'chlc‘?.K

(brought mainframes back, perhaps unnecessarily)

Thin Client Thin Client Mainframe

! PC or NC PC or NC
¥ (X A E |
AN\ Data e Data
.-‘.,\.\H‘Network 5 ! \ Notwork
g\ e g

(a) (b)
3-tier Client-Server Web-based Archit.

Web Database
Server Server
' -
Browser ;
!
_— Data ~ T
s Network
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Mobile Code Architectures: o
(a) Portable and Mobile Code; (b) Mobile Nodes

=7
-& "::"“'t_ Wired fixed
/ and F it
= : Wireless || [oge
'»\ Data l
‘_'Y“'““‘ ™7 \_ Network ff
= ﬁ.,- N

(b)

113

Event-based Architectures: o
(a) Multipeer; (b) Publisher-subscriber

La

Publishers Subscribors
% - he= J! Ej MESSAGE BUS
RS = 7 e
S gy 4‘

P —|
Nl

/qe

____ Network =/

(b)

114

Non-functional properties of o
Distributed Systems

* What systems are, rather than what they do
+ Some familiar names:

- reliability and availability (fault tolerance)

- timeliness and predictability (real-time)

- confidentiality and integrity (security)

1.15

Some formal notions

1.16
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Formal system predicates

a colloquial definition

+ Objective
- specify in a formal manner, including formulas containing logic
(and, or, exists, forall), temporal logic (eventually, always) and
time (until/from) operators
- we can specify the properties of any program or protocol in
terms of properties of: safety and/or timeliness , liveness

of

117

Formal sklstem redicates

a colloquial definition

* Safety
- the measure in which a service/program does not do bad things
- safety properties specify that wrong events never take place
- a safety property specifies that a predicate P is always true

- example, "any delivered message is delivered to all correct
participants" is a safety property

- If it is not secured, the system becomes incorrect
- however, it does not impose that messages are delivered at all

of

1.18
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Formal sxstem redicates

a colloquial definition

* Liveness

- the measure in which a service/program does good things

- liveness properties specify that good events eventually take
place

- a liveness property specifies that predicate P will eventually be
true

- example, "any message sent is delivered to at least one
participant" is a liveness property

- If it is not secured, the system may not progress (messages
are not delivered)

Gg)ﬁf

119

Formal system predicates
a colloquial definition

+ Timeliness

- a sub-class of safety property is timeliness, which specifies
that a predicate P will be true in relation to a given instant of
real time (until, before, at)

- "any transaction completes until T+ from the start" is a
timeliness property

- to be secured, all transactions must execute within Tt time
units

of

1.20
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Space-Time and Lattice Diagrams ot
P1 . g P 7 . 2 3 ! 7]
; t[o]
b :':\
P2 1 7 ® 3| 4
P3 1 gZ 3 ’ 4

- Event types:

- execution, send, receive, deliver
+ Precedence:

- based on notion of global time with granularity (tick) g

-[[does 4:00 tick af exactly the same place everywhere? |
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Distributed systems paradigms

1.23
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Cuts and Global States (6S) o

Consistent T Cut fcut
Cut 3 e

P

Ps

P4

+ Types of cuts:
- inconsistent cut: snapshot gives invalid picture of GS
- consistent cut: snapshot gives correct but possibly incomplete
picture of GS (e.g., ighores messages in fransit)

- strongly consistent cut: snapshot faithfully represents GS

P ©2002:08 Paulo Verissimo - All rights reserved. no unauthorized reproduction in any form gl W73
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Naming and addressing

Client Server Name Server Client Server
whereAreYou(serverA) (0] ®
c lam@(393.2)| S DNs |sherels(serverd) ¢ fooseaz) | S
req[393.2] reply(ServerA,393.2)
o E— s reply[557.0]
reply[557.0] 118 @ (557) ® (393)
—l—
(a) (b)

Figure 2.2.  Name to Address Translation: (a) Broadcast; (b) Name Server
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Message passing

User
Process

User
Process

User User
Process PRrocEss

éoend

OPER. Sys Sup.

OrER. Sys Sup. OreRr. Sys Sup. OrER. Sys Sup.

Figure 2.4. Message Passing Protocols: (a) Send-Receive;(b) Acknowledged-Send

125

Group communication

* process groups

- group communication Soorce, [l 4
service (multicast)

* group membership
(views)

* main components of a
multicast protocol:
- routing;
- omission tolerance; ¥ « v 4
- flow-control; <] M m

- ordering; Figure 2.9.  Multicast Tree
- failure recovery.

. Recipients

1.30

Remote operations (contd.)

BLOCKED
{ @ FORK  BLOCKED JOIN >\
v
lix. PREPAR W™ W ywiyny |

s Sup.

ITX. PREPARMY™ iy ‘
TX. PREPAR Ay A; |

OPER. Sys Sup. OPER. Sys Sup.

TX. PREPAR U™ l

’ TIME
—
SERVER
EXECUTION

SERVER
EXECUTION

(@ (b)

Figure 2.8.  Remote Operation Interfaces: (a) Blocking; (b) Non-Blocking

@K
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Time and
synchrony

of

1.31




Time and Clocks of

+ Common uses of clocks in distributed systems:

* frigger events

* register the time at which events occurred
* measure durations

- artifact: support protocol implementation

Global Time o

Why? |

* trigger events
- how do you synchronise distributed event triggering?

* register the time at which events occurred
- how do you correlate distributed registers?

* measure durations
- how do you measure what starts here and ends there?

« Global Clock:

- abstraction: a set of mutually synchronised clocks

W_E[Tin Distribyted Svstemsd o)
Absolute Time o
Why?

+ coordination of systems that do not communicate
directly

* bounding the error in lenghty duration measurement

* Absolute global clock.

- abstraction: a set of clocks synchronised individually to a
common reference

- e.g., UTC- Universal Time Coordinated; TAI- Temps Atomique
Internacional

e in DiStrbuic Systemsd
Time and clocks o
Properties of a Global Clock System

v
e |

* Physical Granularity

th+l tk _
“pc -pc =g
* Virtual Granularity
- ve™ etz g,

+ Convergence

- | ve (19)- ve(19) | <6,
* Precision

- | ve(t)-ve(t) | < m,, forall 0 <t
+ Rate

- 1- p, <[ Hve ™) t(ve, %) 1/ g, < 1+ p, , forall 0 <tk < tkel
+ Accuracy




W Er in Dicirbuic s siemad
Time and clocks o
Properties of a Global Clock System

Physical Granularity (g)

- fundamental tick or pulse of hardware clock.
Virtual Granularity (gv)

- tick of the virtual clock, submultiple of g
Convergence (3v)

- measures how close virfual clocks are o each other immediately
after the synchronization algorithm terminates.

Precision (T1v)

- measures how closely virtual clocks remain synchronized to each
other at any time.

Rate (pv)

- instantaneous rate of drift of virtual clocks.
Envelope Rate (pa)

- long-term, or average rate of drift.
Accuracy (av)

- measures how closely virtual clocks are synchronized to an absolute
real time reference, provided externally.
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e of
Clock synchronisation

* Hardware clocks drift with time
- some (e.g. cesium or rubidium GPS clocks) are extremely stable
- but PC and workstation HW clocks are bad (worst than 1ppm)
* so they have to be synchronised periodically
- clock synchronisation protocols
* Internal synchronisation:
- ensures precision
- normally clocks cooperatively readjust (agreement or
convergence based)
+ External synchronisation:
- ensures accuracy and precision (r,= 2 a,)
- normally clocks read from an external master (round-trip-based)

PP 2002:08 Paulo Verissimo - All rights reserved, no unauthorized reproduction in any form il Wcvd

Clock synchronisation
(master- ou round-trip based)

- external synchronization :
- based on round-trip
measurement from central \ ;
master clock
laster
+ Accuracy:

- assessed by measuring round-
trip delay

- depends on delay symmetry p=
- (df+db)/2 best run R
+ Precision:
- precision is fwice the
accuracy (m,= 2 a,)

d; d,
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P_EIT in Distribyied Systemsdg
Clock synchronisation o
agreement-based

+ Agreement based:
- convergence based on F/T
average or median W
- clocks are Byzantine
* Precision:
- precision depends on clock
reading error
- processors compute common
value to set clocks to
- time for agreement is in
critical path of precision

Agreemt

Protocol
& AGREE:

22| |

FIT average

1.39




* synchronism means (w.r.t. messages):

Synchronism

- known and bounded message delivery delay
* synchronism metrics of quality:
+ Steadiness (o)

= 6= mMaX,(Tpmax = Tpmin) (variance of delivery delay across execs)

+ Tightness (1)

=T = MAX, (TP (M) - 1p9(m) ) (variance of delivery delay in same exec)

Causal Order

Light
cone of
the future

T

Event in the
present

N

c Light cone

P2 of the
m past
e d

space

X + cause-effect order:
: happened-before relation : - natural universe order
- a--> biff: - apartial order:
- a before b locally - depends of time-like and space-

- a send and b reception of a like separation of events
- relativistic effect due o speed

p p v G
q
— t5(m) —— TPomax
T —— e iei O Hrieecs
toP(m) o
—_— (a) (b) —_—
142

W_FIT in Distribyted Systemsd

Ordering

1.43

difference between local and
message events
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Ordering

* Causal Delivery

- for any two messages M1 and M2, sent by p and q, delivered to
any correct processes, if send(M1) --> send(MZ2), then
deliver(M1) --> deliver(MZ2)

- Example: clients compete over a server o schedule a trip, buy
some stock, and communicate between them at the same time;
only causal reflects the inter-client relations on the server
requests

* FIFO Delivery (first-in-first-out)

- for any two messages M1 and M2, sent by p, delivered to any
correct processes, if send(M1) --> send(M2), then
deliver(M1) --> deliver(mMZ2)

- Example: this is a reduction of the general causal order to
messages originated from only one sender (e.g. TCP ordering)




operations in FIFO order
(the most intuitive ordering)

S R —
#10,

S

r is solving problem by executing 3 modules in sequence
- he disseminates intfermediate results (m1, m2, m3) to s and q, who
perform the second phase, which depends on the sequence order.

- q got ml with #10 and then m3 with #12, he knows m2 with #11 is
missing and delays delivery of m3 until m2 arrives and only then it
delivers messages m2 and m3 in that sequence.

- NB: in complex protocols, reception often different from delivery

of

148

Solution: causal order

- FIFO is expanded fo causal and englobes all nodes: m1 -> m2 is
now recognised

- mlis delayed to q, but q delays delivery of m2, to fulfil causal
delivery

1.50

when FIFO order is insufficient

- problem was complex, so r breaks his job in steps, asking s to
perform step 2 after he does step 1, which he signals with m1

- s executes step 2 when ml arrives, after which it send m2
- problem: m1 got delayed, it will be delivered to q after m2

- since q waits for messages in the order they were issued to
perform the second phase, the application fails

- what went wrong is that FIFO protocol does not capture ml ->
m2 causal relation and order inversion takes place

- cannot be used if competing senders also exchange messages

of

1.49

operations in causal order

q

m, [1]
AN

m, 4 3]

- rleads a team work performing some computations

- result is accumulated in variable W, update function compares W
previous state to new result, takes greatest and adds 3

- errors in previous works make r request all steps done in parallel
by r, g and s, and results disseminated to all, to compare results
and replicate W. Any one finishing a step posts result to all
including himself, in causal order.

- if everybody is doing the same steps, it is expected for W to be
the same everywhere.

1.51




W_E[T in Distribyfed Systemsg§
when causal order is insufficient e
q <w=2> <W=6> [<w=9>

- initially W=2, and r and s disseminate their results concurrently

- so causal order protocol does not order them:

- ma = <1> is received first at r, W=2+3=5, then mb = <3> is received
and W=5+3=8. mb = <3> is received first at q, W=3+3=6, then mb
= <3> is received and W=6+3=9

- this violates replicated computation correctness subsequent
steps depending on the value of W will not be consistent
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Solution: total order

<Ww=2>

<w=6> <w=9>

- previous problem is solved with total order

- active replica management requires total order, be it causal or
not

- in which cases can we do active replicas without total order ?

- think..

1.54

Tl of
Total ordering implementations

* Total ordering
- Any two messages delivered to any pair of participants are
delivered in the same order to both participants
- Example: sending operation or update requests to replicas of a
server, so that they execute them inthe same order and
produce the same result and/or assume the same state

Ordering
mechanisms and
algorithms

1.55




e Causa of
Causal ordering with logical clocks

» Objective: q (@) (BY) 9]
« order events by cause-effect /L//U /
or precedence (e1 --> e2)
r 1 21 | [7] [
* Implementation rules: m
- initially: LCi=0 forall i; s [ 2] AT

« ateach elocal to p: incr. LCp

« at each send, timestamp m
with LC value: LC(m) =LCp

q [4] [5] (8]
« at each reception at g, incr.

LCq, and update LCq with ’ P’A::/L/ )7//
max [LCq,LC(m)] r U@ 141 51 51
s %m% }/

1
+ e1->e2==> LC(e1) < LC(e2) m2

* Ordering rules:

1.56

Causal order'in% with vector clocks in action
SIS CBCAST protocol)

Implementation rules (Pi -> Pj):

« initially: VTi[k]=0 forall i,k

at each send m: [}] [3]
« incr. VTi[i] and timestamp m with VTi: VT(m) pt |'| ™ |
« at each Rx at Pj delay delivery until: (E}J)

+ msg m-1 from Pi seen : VT(Pj)[[]=VT(m)[i]-1 and \ [f]\ [%]
« all msgs preceding m delivered at Pi, p2 1] ma~(t

* Pidoes not delay msgs to itself
* upon each delivery:

also delivered at Pj : VT(m)[KISVT(P)K] , forall k ’ \(2-141)
1 (22,1)
Pp3 1 N

« update VT(Pj) w/ max[VT(P})[K],VT(m)[K]] forall k

Example:

+ when p3 receives m5, VT3=[1,1,1]
« since VT(m) =[2,2,1], msg from p1 is missing at p3
« wait until rx m4, which sets VT3=[2,1,1], and deliver

mb5, setting VT3=[2,2,1]
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Coordination
and
Consistency

P_EIT in Distrigyted Svstemsd]
Leader election (bully aigorithm) of

7
AreYouThere?

4
o Tl
LA\

- always elects the highest ranked active candidate (i.e.,
process with the lowest identier)

- instead of sending? a message to eve;y process, process p
trying to become’leader just sends AreYouThere? to higher
ranks, if someone replies, p silently gives up

- if nobody replies, p tells all lower ranks of his intention,
sending TAm TakingCharge, and waits for ack from each

- when all acks come (or a timeout occurrs, since some of the

rocesses with lower rank may have crashed), p assumes the
eadership by sending ZAm TheBoss to all processes.
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Consistent Global States
(issues with Ad-hoc State Snapshots)

1

i
.( i COMMUNICATIONS CHANNEL

ST:A ;"\\<—> 2008 s1:B
LN T

~(eut2)

- “ o~
X, i
“~ i
— !
S2:A AN } $2:B
AN i

S2A ~_SzB /

s

- total=700%; money transfer A-> B, 50%; during transfer, ad-hoc
snapshot is done, from external node sending messages to A and B.

- cut 1:<S52:A=450%, S1:B=200$>=650$ ! (msg sent, not received!)

- cut 2:<S1:A=500%, S2:B=250$>=750% ! (msg received, not sent!)

- acorrect snapshot protocol will flush the channels fo ensure
consistency

of

1.65

Inconsistent Cuts

P

m,

P 2

* what you get if you don't use the right algorithm:
- is there anything strange with message m1?
- and now?

- acorrect snapshot protocol will discard messages "not sent” to
ensure consistency

1.66

Consensus
+ Validity

- if a process decides v, then v was proposed by some process
- no process decides more than once
* Agreement
- No two correct processes decide differently
+ Termination
- Every correct process eventually decides

+ Consensus is equivalent to atomic broadcast
- That is, one can implement one with the other
- Does not mean that all such implementations are efficient!

~ Distributed consensus ef

(intuition)
new item,
p1 1 11,1,3,3]=1
02 / 1 7 [1,1,3,31=1
3 [1,1,3,31=1

p3

- set of processes must agree on one action, in a decentralized way: decide
who keeps each new item that arrives, all send their votes to all

new item arrives, p2 and p4 are busy, so only p1 and p3 offer to pick it
p2 receives the proposal from pl in the first place, thus it supports p1,
while for the same reason p4 supports p3.
when all votes are collected, all have same vector to decide from (1,1,3,3)
* any agreed deterministic function will do, ex:
- "winner is the one with more votes, in case of tie, the smaller ID wins"

i ; iahed-+o-bl
——the-ifem-is-assigned-topk
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Membership

group membership

- set of processes belonging to the group at a given point in
time

membership service:

- keeps track of membership and provides info to group
members

group view:

- subset of members mutually reachable at a given point

group membership is of ten dynamic:

- in response fo user demand or changes in the runtime
environment (load, failures, etc)

- it may grow, by letting new processes join the group
- it may shrink, by letting members leave the group
- view changes when processes fail or when they recover
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Agreement on Membership

(issues with ad-hoc view change)

* r joins group, view is g
Qlab Do tasks:
{q,r.s}, then s leaves 123,456
- change notification not A
consistent:
- rgetsrequest 2inview fans (2] [q,r]‘é
{q.r.s}, so picks <3,4> ’ \ it
- q gets request 2 in view
{q.r}, so picks <1,2,3> r—= \ [sal |
* what went wrong:
s ~
Ieavew

- <3>is performed twice
- <b,6> are not performed

PE[Tin Distribyied Systems @K

Agreement on Membership

(decentralized applications)

coherent notion of membership
useful for a number of c
applications

e.g. decentralized dispatcher

- group of workers (set of parallel
processors) divide a task requested
by client by the current number of
elements

- dispatch is local, split is dynamic: s
processors may come and go

-

e in DiStrbuic Systemsd
View Synchrony o
view-synchronous view change

+ solution to previous
problem:

- membership changes

notified consistently with ~ p—gr —

message flow ! N

- if a message m is delivered q_J 6
to a process p in view Vi, g 1 D!

then forall qin Vi, m is
also delivered fo q inview ¢

[p.q.r.s] B KnowsFadod(s)_ (p.q.r]

o

I crash or v '
* how to ensure all { ‘W'l/\;k wosdbe  sctivs
processes deliver same * view-chg

messages in same view?

- flush messages until a
consistent cut
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— e
Atomic Broadcast

properties

+ Validity
- If a correct processor broadcasts a message M, then some
correct processor eventually delivers M.
+ Agreement

- If a correct processor delivers a message M, then all correct
processors eventually deliver M.

* Integrity
- For any message M, every correct process p delivers M at most
once

- If process p delivers M and sender(M) is correct, then M was
previously broadcast by sender(M).
+ Total order
- If two correct processors deliver two messages M1 and M2

‘rhgn both processors deliver the two messages in the same
order.
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W Eir in Disurinyica Systomsd &
Atomic Broadcast o
(symmetric approach - intuition)

reliability through space

send(m,Cm) T
redundancy or tx-w-resp >
total causal ordering through  p, .
physical clock timestamps Cm
delivers by message P, : N
timestamp order Cm \\
disambiguates e.g. by UID or  F3 ' %
MAC address, etc. p \ \

i.e. msg(Cm) after Cm-1 and 4 e
before Cm+1 everywhere t t+A
can be done with logical - Received —» -Delivered

timestamps

P Disibueg 5ysiemag
Atomic Broadcast ef
(asymmetric approach - intuition)

Token m1 m2 Token [m1<m2]

VAVAN AVA

q / /& \\ q / /
r A

7

4

2

r req(my \ \ m1%< N
s s \

req(m2) m2

- reliability by tx-w-resp w/ store-and-forward or diffusion w/
negative ack

+ token-based: sequencer decides ordering and propagates to all
* Yotal non-causal order

PE[Tin Distribyied Systems @K

Replicated computations

- distributed applications may run replicated pieces of
code which should behave in the same way (e.g. fault
tolerance, performance)

+ atomic broadcast guarantees, in a decentralized way,
that replicas receive the same sequence of inputs:
- same requests, in the same order




Concurrency
and
Atomicity

1.81

Distributed Atomicity o

* how to ensure atomicity of transactions that run
across several nodes?
+ Problem:

- partial failure of nodes, and partitions, leading to inconsistent
termination

+ Solution:
- distributed atomic commitment
- most used protocol - two-phase commit

PE[Tin Distribyied Systems )
Atomicity o

+ atomicity is the property of an indivisible operation

* transactional atomicity is that property extended o a
set of operations that are made look like indivisible

+ atomic transaction is an operation exhibiting that
property

- several techniques concur to achieve it:

- either all operations are performed, or the whole transaction
is aborted

- intermediate results cannot be seen before the end
- results must be stored in non-volatile memory to be persistent

5 -ohase L of
2-phase Distributed Atomic Commitment

Phase 1 . Phase 2 Phase 1 . Phase 2
Pc _o Py Pc o i
prepare ok commit prepare ok abort
. ok} i nok:
Pj ' Pj |
Pk Y/ : ¥ Pk Y/ : Y
* Two-phase commit
- commit
- abort
Problem:

- subject to blocking
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Distributed systems models

Synchrony models

Table 3.1.  Asynchronous Model Properties

o Processing delays are unbounded or unknown

o Message delivery delays are unbounded or unknown

e Rate of drift of local clocks is unbounded or unknown

e Difference between local clocks is unbounded or unknown

- The last two are essentially equivalent:

- since a local clock in a time-free system is nothing more than a
sequence counter, synchronized clocks are also impossible in
an asynchronous system.

- however, they are listed for a better comparison with
synchronous models.

P/_ELT in Distribyted Systemsd 0
Synchrony models o

Table 3.2.  Synchronous Model Properties

¢ Processing delays have a known bound

o Message delivery delays have a known bound

¢ Rate of drift of local clocks has a known bound

¢ Difference between local clocks has a known bound

- The last property species the existence of synchronized clocks.

- WAhilst not required of every synchronous system, the first
three properties make it possible.

1.91

Synchrony models in between

* synchrony or asynchrony are not homogeneous
properties of systems:
- they may vary with time
- they may vary with the part of the system being considered
* that is, sometimes
- the system is not always asynchronous, and/or
- the system is not asynchronous everywhere
* intfermediate models attempting best of both worlds
- asynchronous with failure detectors
- timed asynchronous
- quasi-synchronous
- wormholes

of
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P_ELTin Distribyfed Svstemsd -
Wormhole models o[

* New design philosophy for
distributed systems:

- constructs with privileged
properties which endow systems
with the capability of evading

the uncertainty of environment Payioad Network

(“taking a shortcut") for certain 5/ (g intemey

Intranet)

crucial steps of their operation,
- this allows achieving some

predictability (the required =] & B e
“hard properties") L )
Sy g = SHEWSHGSaoray
- Based on hybrid distributed ° @ e

systems models

1.93

Example system with wormhole

. Hostz | f Hostn
m’ ... APPIPROC ’
PAYLOAD: .. unti
Arbitrary
failures &
Asynchronous Local WORMHOLE:
s Crash
8 failures &
Control Channel Synchronous

Payload Network

the example system (TTCB) is a distributed real-time and
security kernel providing a minimal set of trusted/timely services
- failure detection
- local authentication
- agreement on a fixed sized block of data (TBA)
- _trustworthy global timestamps and random numbers
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brid of
Hybrid distributed systems models
(a.k.a. Wormhole models)

* models in between

- system is neither
synchronous hor
asynchronous

- it is both, at the same
time, different places
+ concept may be
extended to fault
model:

- system is neither fail-
silent (crash) nor fail-

." |
e
arbitrary (Byzantine)

- itis both at the same Q Any-synchrony/security system P
time, different places @ Any-synchrony/security system W

4 |
{\Wormhole'
/ Subsystem‘

1.94

Distributed Computing models




Client-server with RPC

(in action)

of

P E[Tin Distribyigd Svstems @K

Distributed Shared Memory (DSM)

(in action)

+ simulating a shared data item in local memory, over a
distributed and/or possibly replicated memory

CLIENT execute service SERVER
CODE
call return local call reply CODE
A
CLENT ' marshal marshal SERVER
STUB
unmarshal unmarshal
SESSION demux | SESSION
LEVEL LEVEL
PROTOCOL A PROTOCOL
T NETWORK
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=)
Group-oriented
in action)
View Multicast
Join Received Data
R View Data View Data View Data
Applications
Group
Comms.
Network

1.99
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Message bus
(in action)

Alarm  Publish

Subscribe
Message Bus

Actuation Sensor

* publisher-subscriber
+ oriented fo event processing
+ supported by event-based communication
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Distributed File systems

(in action)

file aa===
access
request

5
J Download
v

Upload.

+ Download-Upload
- retrieving and storing the
whole file from/to the file

e

access
request

read/write

..

Client
+

Client

File Block
Cache

+
File Block
Cache

+
File Block
Cache

Remote Access
- clients cache file blocks
that they request from

of

server the server
- files remain remote on the
server
1.106
W_FIT in Distribyted Systemsd
(Sen/ )

Object-oriented

(in action)

C client

DL

Ada server

IDL

i Object Request Broker t

HH H H

"'-"' u«-lq

Commom Object Services
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