Fault Tolerance in Distributed
Systems

an introductory course

Paulo Verissimo
Univ. of Lisboa Faculty of Sciences
Lisboa - Portugal
pjv@di.fe.ul pt
http://www.navigators.di.fc.ul.pt

—] ©2002-08 Paulo Verissimo - All rights reserved, no unauthorized direct reproduction in any form.
Citations to parts can be made freely with acknowledgment of the source. 01

W_E[Tin Distribyted Svstemsd -
Pointers to course material OK

Material for distributed systems review, and material
for fault tolerance concepts:

- The book Distributed Systems For System Architects, Paulo
Verissimo and Luis Rodrigues, 2001, Kluwer Academic Publishers.
http://www.navigators.di.fc.ul.pt/dssa

- Further reading for these topics is described in the book, at end
of each chapter.

Material for the newer /ntrusion folerance domain, is
available from the University of Lisbon web site:

- Intrusion-Tolerant Architectures: Concepts and Desigh
Verissimo, P., Neves, N., and Correia, M. In: Architecting
Dependable Systems. Springer-Verlag LNCS 2677 (2003). Ext.
version, Tech. Rep. DI/FCUL TR03-5, Dept. of Informatics, Univ.
of Lisboa (2003). http://www.navigators.di.fc.ul.pt/it/index.htm

A—— e
Course Structure

+ Introduction to distributed systems: foundations, main
paradigms and models

Distributed fault tolerance foundations and paradigms
+ Models and systems for distributed fault-tolerant

computing

Case study: making VP'63 distributed and dependable

* Introduction to the fundamental concepts of intrusion
tolerance

PP © 2002:08 Paulo Verissimo - All ights reserved.ng unauthorized reproduction in any form _g 0.3

PE[Tin Distribyied Systems @K

Further Reading

P_ELT in Distribyfed Systemsdg
Further Reading oK

E. Alata, V. Nicomette, M. Kadniche, M. Dacier, M. Herrb, Lessons learned from the
deployment of a high-interaction honeypot, Proceedings of the 6th European Dependable
Computing Conference, October 2006, Coimbra, Portugal , pp 39-46
L. Alvisi, D. Malkhi, E. Pierce, M. K. Reiter, and R. N. Wright, DK‘namic Byzantine
guorum systems," in Proc. Int'l Conference on Dependable Sys and Networks (FTCS-
0/DCCA-8), pp. 283-292, 2000.

Y. Amir et al. Secure group communication in asynchronous networks with failures:
Integration and experiments. In Proc. The 20th IEEE Intern. Conference on Distributed
Computing Systems (ICDCS 2000), pages 330-343, Taipei, Taiwan, April 2000
Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru, J. Olsen, and D.
Zage. Scaling Byzantine fault-tolerant replication towide area networks. In Proceedings
of the Int. Confer. on Dependable Systems and Networks, pages 105-114, June 2006.
G. Ateniese, M. Steiner, 6. Tsudik: Authenticated group key agreement and friends. In
Proceedings of the 5th ACM Conference on Computer and Communications Security (CCS-
98), pages 17-26, New York, November 3-5 1998. ACM Press.
Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. New multi-party authentication
services and key agreement protocols. IEEE Journal of Selected Areas on
Communications, 18, March 00.
A. N. Bessani, M. Correia, J. S. Fraga, and L. C. Lung.

. In Proceedings of the 6th
gEFEzlgg;,rncﬁonal Symposium on Network Computing and Applications, pages 231-238,

uly .

Christian Cachin. Distributing Trust on the Internet. In Procs. of the Int'l Conf. on
Depend. Systems and Networks (DSN-2002), Gotteborg, Sweden, 2001.
C. Cachin, K. Kursawe and V. Shoup, "Random oracles in Constantinople: Practical
asynchronous Byzantine agreement using crypto raghg", in Proc. 19th ACM Symposium on
Principles of Distributed Computing (PO%C), pp.123-32, 2000b.

P © 2002:08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form g 0.5

P _E[Tin Distribyied Systemseg
Further Reading ot

W. S. Dantas, A. N. Bessani, J. Fr‘c?a, and M. Correia. Evaluating Byzantine quorum
systems. In Procs of the 26th IEEE Symp. on Reliable Distributed Systems, Oct. 2007.
H. Debar, M. Dacier, A. Wespi: Towards a taxonomy of intrusion detection systems.
Computer Networks, 31:805-822, 1999.

Y. Desmedt: Society and group oriented rg;fography: a new concept: Crypto ‘87, LNCS
293, Springer-Verlag, Berlin 1988, 120-127.

Y. Desmedt, Threshold
5, no. 4, pp. 449-457,
Y. Deswarte, N. Abghour, V. Nicomette and D. Powell, “An internet authorization scheme
using smart card-based security kernels”, in Int'l Conf. on Research in Smart Cards (E-
smart 2001), (Cannes, France), LNCS, pp.71-82, Springer-Verlag, 2001.

Y. Deswarte, L. Blain, J.-C. Fabre: Intrusion tolerance in distributed systems. In Proc.

S mg. on Research in Security and Privacy, pages 110-121, Oakland, CA, USA, 1991.

IgE CompSoc Press.

Durward McDonell, Brian Niebuhr, Brian Matt, David L. Sames, Gregg TaIIE Szu-Chien
Wang, Brent Whitmore. Develgpin a Heterogeneous Intrusion Tolerant CORBA System. In
Procs. of Int'l Conf. on Dependable Sys. and Networks (DSN), Washington-USA, 2002.
Bruno Dutertre, Hassen Saidi and Victoria Stavridou. Intrusion-Tolerant Group Management
in Enclaves. In Procs. of the Int'l Conf. on Dependable Systems and Networks (DSN-
2001), Gotteborg, Sweden, 2001.

J. Fraga and D. Powell, "A Fault and Intrusion-Tolerant File System”, in IFIP 3rd Int.
Conf. on Computer Securﬁéy, g.]'. B. Grimson and H.-J. Kugler s.), &Dublin, Ireland
Computer Security, pp.203-18, Elsevier Science Publishers B.V. (North-Holland), 1985.

R. Guerraoui, M. Hurn, A. Mostefaoui, R. Oliveira, M. Raynal, and A. Schiper. Consensus
in asynchronous distributed s%s‘rems: A concise guided four," in Advances in Distributed
Sys. (S. Krakowiak and S. Shrivastava, eds.), vol.1752, LNCS, pp.33-47, Springer, 2000.
R. Guerraoui and M. Vukolic. Refined quorum systems. In Proceedings of the 1st Workshop
on Recent Advances on Intrusion-Tolerant Systems, pages 8-12, 2&)7.

clrggzography," European Transactions on Telecommunications, vol.

P_EIT in Distribyfed Systemsd (o
Further Reading o

C. Cachin and J. A. Poritz H¥dru: Secure replication on the Internet," In Procs. of the
Int'l Conf. on Dependable Systems and Networks (DSN-2002), Washigton, USA, 2002.
M. Castro and B. Liskov, Practical Bx‘zan'rin.e fault tolerance " in Proc. Third Symp.
Operating Systems Design and Implementation ?OSDI), 1999.

M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems, 20(4):398-461, Nov. 2002.
M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstraction to improve fault
tolerance. ACM Transactions Computer Systems, 21(3):236-269, Aug. 2003.
T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed
systems," Journal of the ACM, vol. 43, no. 2, pp. 225-267, 1996.
Nick Cook, Santosh Shrivastava, Stuart Wheater. Distributed Object Middleware to
Supgorf Dependable Information Sharing between Organisations. In Procs. of the Int'l
Conf. on Dependable Systems and Networks (DSN-2002), Washigton, USA, 2002.
M. Correia, N.F. Neves, P. Verissimo, Lau Cheuk Lung,

, Distributed Computing, vol. 17, n. 3, pp. 237--249, March 2005.
M. Correia, N. F. Neves, and P. Ver’issimo.

Jan. 2006.
M. Correia, N. F. Neves, and P. Verissimo.

. In Proceedin%s of the 23rd IEEE Symposium on
Reliable Distributed Systems, pages 74-183, Oct. 2004.

M. Correia, Lau Cheuk Lung, Nuno Ferreira Neves, and P. Verissimo.

. In Proc. of Symp. of
Reliable Distributed Systems, October 2002, Japan.
M. Correia, P. Verissimo, and N. F. Neves.
. In proceedings of the EDCC-4, Fourth European Dependable Computing
Conference, Toulouse, France - October 23-25, 2002.

. Computer Journal, 41(1):82-96,

PP © 2002-08 Paulo Verissimo - Al fignts reserved, o unauthorized reproduction in any form gl 0.6

PP © 2002:08 Paulo Verissimo - All ights reserved.ng unauthorized reproduction in any form _g 0.7

P_EIT in Distribyied Systemsdg)
Further Reading ot

V. Gupta and V. Lam and H. Ramasamy and W. Sanders and S. Singh, Dependability and
Performance Evaluation of Intrusion-Tolerant Server Architectures, Proceedings of the First
Latin-American Symposium, 2003

V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and related problems," in Distributed
Systems (S. J. Mullender,.ed.k New York: ACM Press & Addison-WesIe¥, 993. An
expanded version as Technical Report TR94-1425, Department of Computer Science, Cornell
University, Ithaca NY, 1994.

HariGovind V Ramasamy, Prashant Pandey, James Lyons, Michel Cukier, William H. Sanders.

Quunfifyinﬁ‘fhe Cost of Providing Intrusion Tolerance in Group Communication \?)lsfems, In
Brsois.ztgo b e Int'l Conf. on Dependable Systems and Networks (DSN-2002), Washington,
Matti A. Hflfunen, Richard D. Schlichting and Carlos A. U?urfe. Enhancing Survivability of
Szcurifl Services Using Redundancy. In Procs. of the IntT Conf. on Dependable Systems and
Networks (DSN-2002), Gotteborg, Sweden, 2001.

M. Kadniche, E. Alata, V. Nicomette, Y. Deswarte, M. Dacier Emgiricul analysis and
statistical modeling of ‘atfack processes based on honeypots, WEEDS 2006 - \X/orkshop on
empirical evaluation of dependability and security, June 25-28, 2006, Philadel.,USA.
Gunjan Khanna, Mike Yu Cheng, Padma Varadharajan, Saurabh Bagchi, Miguel Correia, Paulo
Verissimo. IEEE
Trans. on Dependable and Secure Computing, vol.4, no.4, pp. 266-279, 2007.

K. Kihlstrom, L. Moser, and P. Melliar-Smith, The SecureRing grofocols for securing ?sgtg;

communication,” Proc. 31st Hawaii Int'l Conf. on Sys. Sci., pp.317-326, IEEE, Jan.

J. H. Lala, "A B{zunﬁne Resilient Fault-Tolerant Computer for Nuclear Power Plant
Applications”, in 16th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-16), (Vienna,
Austria), pp.338-43, IEEE Computer Society Press, 1986.

B. Liskov and R. Rodrigues. Tolerating Byzantine faulty clients in a quorum system. In
Proceedings of the 26fh Int'l Conference on Distributed Computing Systems, June 2006.

B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, K. Trivedi. Modeling and Quantification
of Security Attributes of Software Systems. In Procs. of the Int'l Conf> on Dep. Syst. and
Networks (DSN-2002), Washigton, USA, 2002.

0 2002-08 Paulo Verissimo - All rignts reserved, no nauthorized reproduction in any Torm g 0.8

P E[Tin Distribyied Svstems)
Further Reading ot

D. Malkhi and M. K. Reiter, An architecture for survivable coordination in large
distributed systems," IEEE Transactions on Knowledge and Data Engineering, vol. 12, no.
2, pp. 187-202, 2000.
%iBMailsgiB and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203-
J‘earll—PhiIip.pe Martin, Lorenzo Alvisi, Michael Dahlin. Small Byzantine Quorums. Procs. of
Int'l Conf. on Dependable Systems and Networks (DSN-2002¥, Washigton, USA, 2002.
J. P. Martin and L. Alvisi. Fast B{zanﬁne consensus. IEEE Transactions on Dependable
and Secure Computing, 3(3):202-215, 2006.
Roy A. Maxion and Tahlia N. Townsen Masguerude Detection Using Truncated Command
Lines. In Procs. of the Int'l Conf. on Dep. Syst. and Networks (D5N-2002),
Washington, USA, 2002.
F. M?lzr and D. Pradhan, “"Consensus with Dual Failure Modes,” presented at The 17th
Int'l Symp. on Fault-Tolerant Computing Systems, Pittsburgh, PA, 1987, pp. 214--22.
L. E. Moser, P. M. Melliar-Smith, and N. Narasimhan. The SecureGroup communication
system. Procs of IEEE Information Survivability Confer., pages 507-516, January 2000.
Peter 6. Neumann, “Practical Architectures for Survivable Systems and Networks,”
Computer Science Laboratory, SRI International, Menlo Park, CA, Technical Report
hﬁp://www.csl.sri.com/~neumann/pr‘ivafe/arldr‘aﬁ.(pdfIps), October 1998.
Nuno Ferreira Neves, Jodo Antunes, Miguel Correia, Paulo Verissimo, Rui Neves,
Proceedin%s of the Int'|l Conference on
Dependable Systems and Networks (DSN), Philadelphia, USA, pp. 457-466, June 2006
N.F. Neves, M. Correia, P. Verissimo, . IEEE
Trans. Parallel and Distr. Systems, vol. 16, no. 12, pp. 1120-1131, Dec. 2005.
S. Panjwani, S. Tan, K. Jarrin, and M. Cukier, An Experimental Evaluation to Determine
if Porf Scans are Precursors to an Attack, in Proc. Int’! Conf. on Dgpendab/e Systems
and Networks (DSN-2005), Yokohama, Japan, June 28-July 1, 2005, pp. 602-{11
P. Pal, F. Webber, and R. Schantz. The DPASA survivable JBI-a high-water mark in
intrusion-tolerant sgsfems. In Proceedings of the 1st Workshop on Recent Advances on
Intrusion-Tolerant Systems, pages 33-37, 2007.

P © 2002:08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form g 0.9

Further Reading

Birgit Pfitzmann and Michgel Waidner. Composition and jntegri reservation of secure
e sé,h‘ia'%&‘i'ﬁc%gizzsrcgew SRS MR s et

. Zhou, F. B. Schneider, and R. v enesse, A: A secure distributed onlin
ﬁggré&%?}lq‘r_\ {gﬁ‘filz\‘i’iaﬁh. Cep. 2%‘00-?%2;5, cs %pf, ior.'nen University, :ec..EOOO.
S. Bhatkar, R. Sekar and D. C. DuVurnﬂ. fflc&gnf ?:'f mguﬁftlobggmhﬁrf ensive

i loit: Pi
el B, 67 P T Frocedi X Secriy
"R o AN p) o . . —
1o|grar|ot distr '.’EdLed ygsfeﬁgg’llzI}FCULLﬁl&gO?—lg, Dgggﬂsnerl;‘fo véfpfg%:?rgagrc‘:, intrusion
University o\!Lls on, Sep. 2006.

P. Sousa, N. F. Neves_and P rissimo I)| N
oo s Sigas- BI/FCUL ¥'§ 62ﬂ4 Department of Informatics, University of

. S . F. d P issimo. LI
F gufi?r'\ S of hy e shc%clci‘fiv r:'SsII“v:‘T:'er‘m:rrioncll Symposium on Dependable Co':npuﬁng
fflggts p%gles 3 N- B I%ef’. % g‘ .

scovery: In ;r"d Wor s?\rz‘)p on J‘T's%t;'p‘a?és in Sys. Dependability (HotDep'07), June 2007.

. Wang, B. Mad . Trivedi, i lysi SITAR intrusion tole tem,
Procegggngssof\ g@%’gg‘é:ﬂ ;ICvIﬁ v:vore uor"; n“g?ﬁ:faﬁfe and sel -rr:gsé%';r:‘rﬁ/reaggtesfseﬁs,em
S = .
J

ages)] - .)
Eﬁo%"kxeeuﬂgﬁ%f ‘&#z‘ﬁ%’»‘r‘i‘r‘.‘é“ au °'¥6|éﬁ?ﬁf"’ése';~v%‘c"% 'g:.. "95‘,2’5')&&?2 é‘%“g TR IRREM
ymposium on Operating Systems Principles, pages 253-267, Oct. 2003.
L. u, F. B. Schneider WdI'R V. Renesse. APSS: _roacfye secret sharing in
gigygz%gn%lésésyzsasg\& AC ransactions on Information and System Securify,
Eb%;laﬁ!tlggﬁl_% gﬁffog‘é“&'}ﬁ I:éTr' E;:gharc@ksl?‘%ref é}oc&{.l\-CL-TR—'593, U;lf/ersuf: of Clam‘br‘ld‘ge
~Romanovs| § an E-éién]re . Conc rrerl\'r Ie:rt‘:gphan llfgm ling and resol ution in

Xy, A 1
%ga"i%ul’a 9(:_ ;?ngys 883.' T rans. on Parallel Distribute ystems,

W_FIT in Distribyted Systemsd ()
Further Readin oK

P. Porras, D. Schnackenberg, S. Staniford-Chen and M. Stillman, "The Common
Intrusion Detection Framework Architecture”, CIDF working group,
http://www.gidos.org/drafts/architecture.txt, (accessed: ggepfember‘, 2001).
D. Powell, 6. Bonn, D. Seaton, P. Verissimo and F. Waeselynck, *
", in 18th TEEE Int. Symp. on
Fault-Tolerant Computing Systems (FTCS-18), (Tokyo, Japan), pp.246-51, IEEE 1988.
D. Ramsbrock, R. Berthier, M. Cukier, Profiling Attacker Behavior Following SSH
Compromises, Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages: 119-124, 2007
M. Reiter: Distributing trust with the Rampart toolkit; Comm's of the ACM,39/4, 1996.
F. B. Schneider, "Implementing fault-tolerant services using the state machine
approach: a tutorial”, ACM Computing Surveys, 22 (4), pp.£99-319, 1990.
Paulo Sousa, Nuno Ferreira Neves, Paulo Verissimo,
. In Proc’s of the Int'l Conference on Dependable
Systems and Networks (DSN'05). Yokohama, Japan, pages 98-107, June 2005.
P. Verissimo, A. Casimiro and C. Fetzer, "
”, in Proc. of DSN 2000, the Int. Conf. on
Dependable Systems and Networks, pp.533-52, IEEE/IFIP, 2000.
Paulo Verissimo, Nuno~Ferreira Neves, and Miguel Correia.
. In Proceedings of the IEEE Third Information Survivability

Workshop (ISW-2000), Boston, Massachusetts, USA, October 2000.
Paulo Verissimo,

, SIGACTN: SIGACT News (ACM Special Interest Gr‘oug on Automata and
Computability Theory), vol. 37, no. 1, (Whole Number 138), 2006.
P. Verissimo, , Future Directions
in Distributed Computing, pp. 108-113,Springer Verlag LNCS 2584, May, 2003
Chenxi Wang, Jack Davidson, Jonathan Hill and John Knight. Protection of Software-
Based Survivability Mechanisms. In Procs. of the Int'l Conf. on Dependable Systems and
Networks (DSN-2002), Gotteborg, Sweden, 2001.

PP 2002-08 Paulo Verissimo - All rights reserved, no unauthorized reproduction in any form gl 1)

0.11

1

Introduction
to
Distributed Systems

Characteristics of Distributed
Systems

- independent failures

+ communication is unreliable

) * has variable delays

* interconnected - speed and bandwidth are
by a network » moderate

- investment costs often lower
than mainframes

* management costs are higher
* partial ordering of events only
- difficult o assess global state

* multiple computers

* sharing state

PE[Tin Distribyied Systems @K

What is a distributed system?

A computer network is not a distributed system

» computer network

- infrastructure serving a set of computers
interconnected through communication links of
possibly diverse media and topology, and using a
common set of communication protocols.

* distributed system

- system composed of several computers which
communicate through a computer network, hosting
processes that use a common set of distributed
protocols to assist the coherent execution of
distributed activities.

PP~ © 2002-08 Paulo Verissimo - Al fignts reserved, ho unauthorized reproduction in any form gl 1.2

S of
Centralized versus Distributed Systems

+ Centralized : + Distributed :
- Accessibility - Scalability, helped by:
*+ to resources and info + geographical scope
- Homogeneity - heterogeneity
- of procedures and technologies * modularity
- Manageability - Sharing:

- single, domain + of common resources and info
- Consistency - Reliability and availability, due to:
+ redundancy and replication
+ graceful degradation
+ failure independence
- Security, due to:
+ vulnerability reduction

- Low cost factor

+ global state

- Security, due to:
+ threat reduction

0 2002-08 Paulo Verissimo - All rignts reseved, no nauthorized reproduction in any orm g 14

—— e
Decentralization

+ Decentralization /s not distribution
- decentralization is local autonomy of means and procedures,
based on local control points that contribute to the goals of a
wider structure
« distribution adapts computing infrastructure o a
decentralized model of activity
- strategy for decentralization?
- decentralize control, integrate and coordinate activities
- supply coherent system view to all loci of control
- common knowledge

- secure decentralized coordination of actions
- distributed algorithmic

P © 2002:08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form g 15

Remote Access Architectures:
(a) Plain Telephone Line; (b) Data Network

Sy Network
| s Service
] Provider

Terminal
L 4

1.7

PE[Tin Distribyied Systems @K

Distributed Systems Evolution

ARCHITECTURES

=0 2002:08 Palo Verissimo - All rignts reserved, no unauthorized reproduction in any form g 1.6

Distributed File and Memory Ar'chi1'ec1.(-’>K

(a) (b)

1.8

LT in Distribuiod Sysiomsd ,
Diskless and X-Terminal Architect. of
(on disk and/or CPU servers)

Data

!b Network

®)
1.9
P in DSt 5)stomag
Client-Server Architectures oK
(Clients became "fat")
Sl
a DL
Data
% Nolwork
1.10

P_ELTin Distribyfed Svstemsd o
3-tier Client-Server or Thin-Client Ar'chlc‘?.K

(brought mainframes back, perhaps unnecessarily)

Thin Client Thin Client Mainframe

! PC or NC PC or NC
¥ (X A E |
AN\ Data e Data
.-‘.,\.\H‘Network 5 ! \ Notwork
g\ e g

(a) (b)
3-tier Client-Server Web-based Archit.

Web Database
Server Server
' -
Browser ;
!
_— Data ~ T
s Network

%0 2002-08 Paulo Verissimo - All rignis reserved, no unauthorized reproduction in any form _g 112

Mobile Code Architectures: o
(a) Portable and Mobile Code; (b) Mobile Nodes

=7
-& "::"“'t_ Wired fixed
/ and F it
= : Wireless || [oge
'»\ Data l
‘_'Y“'““‘ ™7 _ Network ff
= ﬁ.,- N

(b)

113

Event-based Architectures: o
(a) Multipeer; (b) Publisher-subscriber

La

Publishers Subscribors
% - he= J! Ej MESSAGE BUS
RS = 7 e
S gy 4‘

P —|
Nl

/qe

____ Network =/

(b)

114

Non-functional properties of o
Distributed Systems

* What systems are, rather than what they do
+ Some familiar names:

- reliability and availability (fault tolerance)

- timeliness and predictability (real-time)

- confidentiality and integrity (security)

1.15

Some formal notions

1.16

P_ELTin Distribyfed Svstemsd .
Formal system predicates

a colloquial definition

+ Objective
- specify in a formal manner, including formulas containing logic
(and, or, exists, forall), temporal logic (eventually, always) and
time (until/from) operators
- we can specify the properties of any program or protocol in
terms of properties of: safety and/or timeliness , liveness

of

117

Formal sklstem redicates

a colloquial definition

* Safety
- the measure in which a service/program does not do bad things
- safety properties specify that wrong events never take place
- a safety property specifies that a predicate P is always true

- example, "any delivered message is delivered to all correct
participants" is a safety property

- If it is not secured, the system becomes incorrect
- however, it does not impose that messages are delivered at all

of

1.18

W_E[Tin Distribyted Svstemsd .
Formal sxstem redicates

a colloquial definition

* Liveness

- the measure in which a service/program does good things

- liveness properties specify that good events eventually take
place

- a liveness property specifies that predicate P will eventually be
true

- example, "any message sent is delivered to at least one
participant" is a liveness property

- If it is not secured, the system may not progress (messages
are not delivered)

Gg)ﬁf

119

Formal system predicates
a colloquial definition

+ Timeliness

- a sub-class of safety property is timeliness, which specifies
that a predicate P will be true in relation to a given instant of
real time (until, before, at)

- "any transaction completes until T+ from the start" is a
timeliness property

- to be secured, all transactions must execute within Tt time
units

of

1.20

P E[Tin Distribyied Svstems
Space-Time and Lattice Diagrams ot
P1 . g P 7 . 2 3 ! 7]
; t[o]
b :':\
P2 1 7 ® 3| 4
P3 1 gZ 3 ’ 4

- Event types:

- execution, send, receive, deliver
+ Precedence:

- based on notion of global time with granularity (tick) g

-[[does 4:00 tick af exactly the same place everywhere? |

PG 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form il T 11

Distributed systems paradigms

1.23

P_EITin Distripyted Systemseg ()
Cuts and Global States (6S) o

Consistent T Cut fcut
Cut 3 e

P

Ps

P4

+ Types of cuts:
- inconsistent cut: snapshot gives invalid picture of GS
- consistent cut: snapshot gives correct but possibly incomplete
picture of GS (e.g., ighores messages in fransit)

- strongly consistent cut: snapshot faithfully represents GS

P ©2002:08 Paulo Verissimo - All rights reserved. no unauthorized reproduction in any form gl W73

of

Naming and addressing

Client Server Name Server Client Server
whereAreYou(serverA) (0] ®
c lam@(393.2)| S DNs |sherels(serverd) ¢ fooseaz) | S
req[393.2] reply(ServerA,393.2)
o E— s reply[557.0]
reply[557.0] 118 @ (557) ® (393)
—l—
(a) (b)

Figure 2.2. Name to Address Translation: (a) Broadcast; (b) Name Server

1.24

Message passing

User
Process

User
Process

User User
Process PRrocEss

éoend

OPER. Sys Sup.

OrER. Sys Sup. OreRr. Sys Sup. OrER. Sys Sup.

Figure 2.4. Message Passing Protocols: (a) Send-Receive;(b) Acknowledged-Send

125

Group communication

* process groups

- group communication Soorce, [l 4
service (multicast)

* group membership
(views)

* main components of a
multicast protocol:
- routing;
- omission tolerance; ¥ « v 4
- flow-control; <] M m

- ordering; Figure 2.9. Multicast Tree
- failure recovery.

. Recipients

1.30

Remote operations (contd.)

BLOCKED
{ @ FORK BLOCKED JOIN >\
v
lix. PREPAR W™ W ywiyny |

s Sup.

ITX. PREPARMY™ iy ‘
TX. PREPAR Ay A; |

OPER. Sys Sup. OPER. Sys Sup.

TX. PREPAR U™ l

’ TIME
—
SERVER
EXECUTION

SERVER
EXECUTION

(@ (b)

Figure 2.8. Remote Operation Interfaces: (a) Blocking; (b) Non-Blocking

@K

129

Time and
synchrony

of

1.31

Time and Clocks of

+ Common uses of clocks in distributed systems:

* frigger events

* register the time at which events occurred
* measure durations

- artifact: support protocol implementation

Global Time o

Why? |

* trigger events
- how do you synchronise distributed event triggering?

* register the time at which events occurred
- how do you correlate distributed registers?

* measure durations
- how do you measure what starts here and ends there?

« Global Clock:

- abstraction: a set of mutually synchronised clocks

W_E[Tin Distribyted Svstemsd o)
Absolute Time o
Why?

+ coordination of systems that do not communicate
directly

* bounding the error in lenghty duration measurement

* Absolute global clock.

- abstraction: a set of clocks synchronised individually to a
common reference

- e.g., UTC- Universal Time Coordinated; TAI- Temps Atomique
Internacional

e in DiStrbuic Systemsd
Time and clocks o
Properties of a Global Clock System

v
e |

* Physical Granularity

th+l tk _
“pc -pc =g
* Virtual Granularity
- ve™ etz g,

+ Convergence

- | ve (19)- ve(19) | <6,
* Precision

- | ve(t)-ve(t) | < m,, forall 0 <t
+ Rate

- 1- p, <[Hve ™) t(ve, %) 1/ g, < 1+ p, , forall 0 <tk < tkel
+ Accuracy

W Er in Dicirbuic s siemad
Time and clocks o
Properties of a Global Clock System

Physical Granularity (g)

- fundamental tick or pulse of hardware clock.
Virtual Granularity (gv)

- tick of the virtual clock, submultiple of g
Convergence (3v)

- measures how close virfual clocks are o each other immediately
after the synchronization algorithm terminates.

Precision (T1v)

- measures how closely virtual clocks remain synchronized to each
other at any time.

Rate (pv)

- instantaneous rate of drift of virtual clocks.
Envelope Rate (pa)

- long-term, or average rate of drift.
Accuracy (av)

- measures how closely virtual clocks are synchronized to an absolute
real time reference, provided externally.

%G 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form gl 11

e of
Clock synchronisation

* Hardware clocks drift with time
- some (e.g. cesium or rubidium GPS clocks) are extremely stable
- but PC and workstation HW clocks are bad (worst than 1ppm)
* so they have to be synchronised periodically
- clock synchronisation protocols
* Internal synchronisation:
- ensures precision
- normally clocks cooperatively readjust (agreement or
convergence based)
+ External synchronisation:
- ensures accuracy and precision (r,= 2 a,)
- normally clocks read from an external master (round-trip-based)

PP 2002:08 Paulo Verissimo - All rights reserved, no unauthorized reproduction in any form il Wcvd

Clock synchronisation
(master- ou round-trip based)

- external synchronization :
- based on round-trip
measurement from central \ ;
master clock
laster
+ Accuracy:

- assessed by measuring round-
trip delay

- depends on delay symmetry p=
- (df+db)/2 best run R
+ Precision:
- precision is fwice the
accuracy (m,= 2 a,)

d; d,

PP 2002:08 Paulo Verissimo = All rights resetved. no unauthorized reproduction in any form gl TR\

P_EIT in Distribyied Systemsdg
Clock synchronisation o
agreement-based

+ Agreement based:
- convergence based on F/T
average or median W
- clocks are Byzantine
* Precision:
- precision depends on clock
reading error
- processors compute common
value to set clocks to
- time for agreement is in
critical path of precision

Agreemt

Protocol
& AGREE:

22| |

FIT average

1.39

* synchronism means (w.r.t. messages):

Synchronism

- known and bounded message delivery delay
* synchronism metrics of quality:
+ Steadiness (o)

= 6= mMaX,(Tpmax = Tpmin) (variance of delivery delay across execs)

+ Tightness (1)

=T = MAX, (TP (M) - 1p9(m)) (variance of delivery delay in same exec)

Causal Order

Light
cone of
the future

T

Event in the
present

N

c Light cone

P2 of the
m past
e d

space

X + cause-effect order:
: happened-before relation : - natural universe order
- a--> biff: - apartial order:
- a before b locally - depends of time-like and space-

- a send and b reception of a like separation of events
- relativistic effect due o speed

p p v G
q
— t5(m) —— TPomax
T —— e iei O Hrieecs
toP(m) o
—_— (a) (b) —_—
142

W_FIT in Distribyted Systemsd

Ordering

1.43

difference between local and
message events

PP © 2002:08 Paulo Verissimo - All rights reserved. ng unauthorized reproduction in any form g 1.44

Ordering

* Causal Delivery

- for any two messages M1 and M2, sent by p and q, delivered to
any correct processes, if send(M1) --> send(MZ2), then
deliver(M1) --> deliver(MZ2)

- Example: clients compete over a server o schedule a trip, buy
some stock, and communicate between them at the same time;
only causal reflects the inter-client relations on the server
requests

* FIFO Delivery (first-in-first-out)

- for any two messages M1 and M2, sent by p, delivered to any
correct processes, if send(M1) --> send(M2), then
deliver(M1) --> deliver(mMZ2)

- Example: this is a reduction of the general causal order to
messages originated from only one sender (e.g. TCP ordering)

operations in FIFO order
(the most intuitive ordering)

S R —
#10,

S

r is solving problem by executing 3 modules in sequence
- he disseminates intfermediate results (m1, m2, m3) to s and q, who
perform the second phase, which depends on the sequence order.

- q got ml with #10 and then m3 with #12, he knows m2 with #11 is
missing and delays delivery of m3 until m2 arrives and only then it
delivers messages m2 and m3 in that sequence.

- NB: in complex protocols, reception often different from delivery

of

148

Solution: causal order

- FIFO is expanded fo causal and englobes all nodes: m1 -> m2 is
now recognised

- mlis delayed to q, but q delays delivery of m2, to fulfil causal
delivery

1.50

when FIFO order is insufficient

- problem was complex, so r breaks his job in steps, asking s to
perform step 2 after he does step 1, which he signals with m1

- s executes step 2 when ml arrives, after which it send m2
- problem: m1 got delayed, it will be delivered to q after m2

- since q waits for messages in the order they were issued to
perform the second phase, the application fails

- what went wrong is that FIFO protocol does not capture ml ->
m2 causal relation and order inversion takes place

- cannot be used if competing senders also exchange messages

of

1.49

operations in causal order

q

m, [1]
AN

m, 4 3]

- rleads a team work performing some computations

- result is accumulated in variable W, update function compares W
previous state to new result, takes greatest and adds 3

- errors in previous works make r request all steps done in parallel
by r, g and s, and results disseminated to all, to compare results
and replicate W. Any one finishing a step posts result to all
including himself, in causal order.

- if everybody is doing the same steps, it is expected for W to be
the same everywhere.

1.51

W_E[T in Distribyfed Systemsg§
when causal order is insufficient e
q <w=2> <W=6> [<w=9>

- initially W=2, and r and s disseminate their results concurrently

- so causal order protocol does not order them:

- ma = <1> is received first at r, W=2+3=5, then mb = <3> is received
and W=5+3=8. mb = <3> is received first at q, W=3+3=6, then mb
= <3> is received and W=6+3=9

- this violates replicated computation correctness subsequent
steps depending on the value of W will not be consistent

%G 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form gl 1Y)

Solution: total order

<Ww=2>

<w=6> <w=9>

- previous problem is solved with total order

- active replica management requires total order, be it causal or
not

- in which cases can we do active replicas without total order ?

- think..

1.54

Tl of
Total ordering implementations

* Total ordering
- Any two messages delivered to any pair of participants are
delivered in the same order to both participants
- Example: sending operation or update requests to replicas of a
server, so that they execute them inthe same order and
produce the same result and/or assume the same state

Ordering
mechanisms and
algorithms

1.55

e Causa of
Causal ordering with logical clocks

» Objective: q (@) (BY) 9]
« order events by cause-effect /L//U /
or precedence (e1 --> e2)
r 1 21 | [7] [
* Implementation rules: m
- initially: LCi=0 forall i; s [2] AT

« ateach elocal to p: incr. LCp

« at each send, timestamp m
with LC value: LC(m) =LCp

q [4] [5] (8]
« at each reception at g, incr.

LCq, and update LCq with ’ P’A::/L/)7//
max [LCq,LC(m)] r U@ 141 51 51
s %m% }/

1
+ e1->e2==> LC(e1) < LC(e2) m2

* Ordering rules:

1.56

Causal order'in% with vector clocks in action
SIS CBCAST protocol)

Implementation rules (Pi -> Pj):

« initially: VTi[k]=0 forall i,k

at each send m: [}] [3]
« incr. VTi[i] and timestamp m with VTi: VT(m) pt |'| ™ |
« at each Rx at Pj delay delivery until: (E}J)

+ msg m-1 from Pi seen : VT(Pj)[[]=VT(m)[i]-1 and \ [f]\ [%]
« all msgs preceding m delivered at Pi, p2 1] ma~(t

* Pidoes not delay msgs to itself
* upon each delivery:

also delivered at Pj : VT(m)[KISVT(P)K] , forall k ’ \(2-141)
1 (22,1)
Pp3 1 N

« update VT(Pj) w/ max[VT(P})[K],VT(m)[K]] forall k

Example:

+ when p3 receives m5, VT3=[1,1,1]
« since VT(m) =[2,2,1], msg from p1 is missing at p3
« wait until rx m4, which sets VT3=[2,1,1], and deliver

mb5, setting VT3=[2,2,1]

PP 2002:08 Paulo Verissimo - All rights reserved, no unauthorized reproduction in any form il .U

Coordination
and
Consistency

P_EIT in Distrigyted Svstemsd]
Leader election (bully aigorithm) of

7
AreYouThere?

4
o Tl
LA\

- always elects the highest ranked active candidate (i.e.,
process with the lowest identier)

- instead of sending? a message to eve;y process, process p
trying to become’leader just sends AreYouThere? to higher
ranks, if someone replies, p silently gives up

- if nobody replies, p tells all lower ranks of his intention,
sending TAm TakingCharge, and waits for ack from each

- when all acks come (or a timeout occurrs, since some of the

rocesses with lower rank may have crashed), p assumes the
eadership by sending ZAm TheBoss to all processes.

PP 2002-08 Paulo Verissimo - All ights reserved, no unauthorized reproduction in any form N WY1

Consistent Global States
(issues with Ad-hoc State Snapshots)

1

i
.(i COMMUNICATIONS CHANNEL

ST:A ;"\\<—> 2008 s1:B
LN T

~(eut2)

- “ o~
X, i
“~ i
— !
S2:A AN } $2:B
AN i

S2A ~_SzB /

s

- total=700%; money transfer A-> B, 50%; during transfer, ad-hoc
snapshot is done, from external node sending messages to A and B.

- cut 1:<S52:A=450%, S1:B=200$>=650$! (msg sent, not received!)

- cut 2:<S1:A=500%, S2:B=250$>=750% ! (msg received, not sent!)

- acorrect snapshot protocol will flush the channels fo ensure
consistency

of

1.65

Inconsistent Cuts

P

m,

P 2

* what you get if you don't use the right algorithm:
- is there anything strange with message m1?
- and now?

- acorrect snapshot protocol will discard messages "not sent” to
ensure consistency

1.66

Consensus
+ Validity

- if a process decides v, then v was proposed by some process
- no process decides more than once
* Agreement
- No two correct processes decide differently
+ Termination
- Every correct process eventually decides

+ Consensus is equivalent to atomic broadcast
- That is, one can implement one with the other
- Does not mean that all such implementations are efficient!

~ Distributed consensus ef

(intuition)
new item,
p1 1 11,1,3,3]=1
02 / 1 7 [1,1,3,31=1
3 [1,1,3,31=1

p3

- set of processes must agree on one action, in a decentralized way: decide
who keeps each new item that arrives, all send their votes to all

new item arrives, p2 and p4 are busy, so only p1 and p3 offer to pick it
p2 receives the proposal from pl in the first place, thus it supports p1,
while for the same reason p4 supports p3.
when all votes are collected, all have same vector to decide from (1,1,3,3)
* any agreed deterministic function will do, ex:
- "winner is the one with more votes, in case of tie, the smaller ID wins"

i ; iahed-+o-bl
——the-ifem-is-assigned-topk
0 2002-08 Paulo Verissimo - All rights reserved, o unauthorized reproduction in any form gl WY}

Membership

group membership

- set of processes belonging to the group at a given point in
time

membership service:

- keeps track of membership and provides info to group
members

group view:

- subset of members mutually reachable at a given point

group membership is of ten dynamic:

- in response fo user demand or changes in the runtime
environment (load, failures, etc)

- it may grow, by letting new processes join the group
- it may shrink, by letting members leave the group
- view changes when processes fail or when they recover

PG 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form gl)

Agreement on Membership

(issues with ad-hoc view change)

* r joins group, view is g
Qlab Do tasks:
{q,r.s}, then s leaves 123,456
- change notification not A
consistent:
- rgetsrequest 2inview fans (2] [q,r]‘é
{q.r.s}, so picks <3,4> ’ \ it
- q gets request 2 in view
{q.r}, so picks <1,2,3> r—= \ [sal |
* what went wrong:
s ~
Ieavew

- <3>is performed twice
- <b,6> are not performed

PE[Tin Distribyied Systems @K

Agreement on Membership

(decentralized applications)

coherent notion of membership
useful for a number of c
applications

e.g. decentralized dispatcher

- group of workers (set of parallel
processors) divide a task requested
by client by the current number of
elements

- dispatch is local, split is dynamic: s
processors may come and go

-

e in DiStrbuic Systemsd
View Synchrony o
view-synchronous view change

+ solution to previous
problem:

- membership changes

notified consistently with ~ p—gr —

message flow ! N

- if a message m is delivered q_J 6
to a process p in view Vi, g 1 D!

then forall qin Vi, m is
also delivered fo q inview ¢

[p.q.r.s] B KnowsFadod(s)_ (p.q.r]

o

I crash or v '
* how to ensure all { ‘W'l/\;k wosdbe sctivs
processes deliver same * view-chg

messages in same view?

- flush messages until a
consistent cut

%0 2002-08 Paulo Verissimo - All rigts reserved, no nauthorized reproduction in any form _g 1.72

— e
Atomic Broadcast

properties

+ Validity
- If a correct processor broadcasts a message M, then some
correct processor eventually delivers M.
+ Agreement

- If a correct processor delivers a message M, then all correct
processors eventually deliver M.

* Integrity
- For any message M, every correct process p delivers M at most
once

- If process p delivers M and sender(M) is correct, then M was
previously broadcast by sender(M).
+ Total order
- If two correct processors deliver two messages M1 and M2

‘rhgn both processors deliver the two messages in the same
order.

%G 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form gl IV X1

W Eir in Disurinyica Systomsd &
Atomic Broadcast o
(symmetric approach - intuition)

reliability through space

send(m,Cm) T
redundancy or tx-w-resp >
total causal ordering through p, .
physical clock timestamps Cm
delivers by message P, : N
timestamp order Cm \\
disambiguates e.g. by UID or F3 ' %
MAC address, etc. p \ \

i.e. msg(Cm) after Cm-1 and 4 e
before Cm+1 everywhere t t+A
can be done with logical - Received —» -Delivered

timestamps

P Disibueg 5ysiemag
Atomic Broadcast ef
(asymmetric approach - intuition)

Token m1 m2 Token [m1<m2]

VAVAN AVA

q / /& \\ q / /
r A

7

4

2

r req(my \ \ m1%< N
s s \

req(m2) m2

- reliability by tx-w-resp w/ store-and-forward or diffusion w/
negative ack

+ token-based: sequencer decides ordering and propagates to all
* Yotal non-causal order

PE[Tin Distribyied Systems @K

Replicated computations

- distributed applications may run replicated pieces of
code which should behave in the same way (e.g. fault
tolerance, performance)

+ atomic broadcast guarantees, in a decentralized way,
that replicas receive the same sequence of inputs:
- same requests, in the same order

Concurrency
and
Atomicity

1.81

Distributed Atomicity o

* how to ensure atomicity of transactions that run
across several nodes?
+ Problem:

- partial failure of nodes, and partitions, leading to inconsistent
termination

+ Solution:
- distributed atomic commitment
- most used protocol - two-phase commit

PE[Tin Distribyied Systems)
Atomicity o

+ atomicity is the property of an indivisible operation

* transactional atomicity is that property extended o a
set of operations that are made look like indivisible

+ atomic transaction is an operation exhibiting that
property

- several techniques concur to achieve it:

- either all operations are performed, or the whole transaction
is aborted

- intermediate results cannot be seen before the end
- results must be stored in non-volatile memory to be persistent

5 -ohase L of
2-phase Distributed Atomic Commitment

Phase 1 . Phase 2 Phase 1 . Phase 2
Pc _o Py Pc o i
prepare ok commit prepare ok abort
. ok} i nok:
Pj ' Pj |
Pk Y/ : ¥ Pk Y/ : Y
* Two-phase commit
- commit
- abort
Problem:

- subject to blocking

P 2002:08 Paulo Verissimo - All ights reserved, no unauthorized reproduction in any form R TE:1:

Distributed systems models

Synchrony models

Table 3.1. Asynchronous Model Properties

o Processing delays are unbounded or unknown

o Message delivery delays are unbounded or unknown

e Rate of drift of local clocks is unbounded or unknown

e Difference between local clocks is unbounded or unknown

- The last two are essentially equivalent:

- since a local clock in a time-free system is nothing more than a
sequence counter, synchronized clocks are also impossible in
an asynchronous system.

- however, they are listed for a better comparison with
synchronous models.

P/_ELT in Distribyted Systemsd 0
Synchrony models o

Table 3.2. Synchronous Model Properties

¢ Processing delays have a known bound

o Message delivery delays have a known bound

¢ Rate of drift of local clocks has a known bound

¢ Difference between local clocks has a known bound

- The last property species the existence of synchronized clocks.

- WAhilst not required of every synchronous system, the first
three properties make it possible.

1.91

Synchrony models in between

* synchrony or asynchrony are not homogeneous
properties of systems:
- they may vary with time
- they may vary with the part of the system being considered
* that is, sometimes
- the system is not always asynchronous, and/or
- the system is not asynchronous everywhere
* intfermediate models attempting best of both worlds
- asynchronous with failure detectors
- timed asynchronous
- quasi-synchronous
- wormholes

of

1.92

P_ELTin Distribyfed Svstemsd -
Wormhole models o[

* New design philosophy for
distributed systems:

- constructs with privileged
properties which endow systems
with the capability of evading

the uncertainty of environment Payioad Network

(“taking a shortcut") for certain 5/ (g intemey

Intranet)

crucial steps of their operation,
- this allows achieving some

predictability (the required =] & B e
“hard properties") L)
Sy g = SHEWSHGSaoray
- Based on hybrid distributed ° @ e

systems models

1.93

Example system with wormhole

. Hostz | f Hostn
m’ ... APPIPROC ’
PAYLOAD: .. unti
Arbitrary
failures &
Asynchronous Local WORMHOLE:
s Crash
8 failures &
Control Channel Synchronous

Payload Network

the example system (TTCB) is a distributed real-time and
security kernel providing a minimal set of trusted/timely services
- failure detection
- local authentication
- agreement on a fixed sized block of data (TBA)
- _trustworthy global timestamps and random numbers
PP © 2002:08 Paulo Verissimo = All ights reserved. no unauthorized reproduction in any form S L

brid of
Hybrid distributed systems models
(a.k.a. Wormhole models)

* models in between

- system is neither
synchronous hor
asynchronous

- it is both, at the same
time, different places
+ concept may be
extended to fault
model:

- system is neither fail-
silent (crash) nor fail-

." |
e
arbitrary (Byzantine)

- itis both at the same Q Any-synchrony/security system P
time, different places @ Any-synchrony/security system W

4 |
{\Wormhole'
/ Subsystem‘

1.94

Distributed Computing models

Client-server with RPC

(in action)

of

P E[Tin Distribyigd Svstems @K

Distributed Shared Memory (DSM)

(in action)

+ simulating a shared data item in local memory, over a
distributed and/or possibly replicated memory

CLIENT execute service SERVER
CODE
call return local call reply CODE
A
CLENT ' marshal marshal SERVER
STUB
unmarshal unmarshal
SESSION demux | SESSION
LEVEL LEVEL
PROTOCOL A PROTOCOL
T NETWORK
0 2002:08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form sl K-/
P_EITin Distripyted Systemseg
=)
Group-oriented
in action)
View Multicast
Join Received Data
R View Data View Data View Data
Applications
Group
Comms.
Network

1.99

PP 2002:08 Paulo Verissimo = All rights resetved. no unauthorized reproduction in any form gl IT1y)

Message bus
(in action)

Alarm Publish

Subscribe
Message Bus

Actuation Sensor

* publisher-subscriber
+ oriented fo event processing
+ supported by event-based communication

PP 2002-08 Paulo Verissimo - All ights reserved, no unauthorized reproduction in any form gl NIV}

Distributed File systems

(in action)

file aa===
access
request

5
J Download
v

Upload.

+ Download-Upload
- retrieving and storing the
whole file from/to the file

e

access
request

read/write

..

Client
+

Client

File Block
Cache

+
File Block
Cache

+
File Block
Cache

Remote Access
- clients cache file blocks
that they request from

of

server the server
- files remain remote on the
server
1.106
W_FIT in Distribyted Systemsd
(Sen/)

Object-oriented

(in action)

C client

DL

Ada server

IDL

i Object Request Broker t

HH H H

"'-"' u«-lq

Commom Object Services

1.108

