2

Introduction to Fault Tolerance

Foundations and Paradigms

21

The failure of computers

Why do computers fail and what can we do about it?
[J. Gray]

Because:

- All that works, fails

- We tend to overestimate our HW e SW--- that's called faith©®
So, we had better prevent (failures) than remedy

- Must do it in a predictable and repeatable way

Short of faith, we need:

- ascientific way to quantify, predict, prevent, folerate, the
effect of disturbances that affect the operation of the
system

23

Fault tolerance foundations

PP~ © 2002-08 Paulo Verissimo - Al fignts reserved, ho unauthorized reproduction in any form gl 22

of

The failure of computers

Why do computers fail and what can we do about it?
[J. 6ray]

Because:
- All that works, fails
- We tend to overestimate our HW e SW--- that's called faith©

So:
- We had better prevent (failures) than remedy
Dependability is ...
- that property of a computer system such that reliance can
justifiably be placed on the service it delivers
Why?
- Because (faith notwithstanding) it is the scientific way to

quantify, predict, prevent, tolerate, the effect of
disturbances that affect the operation of the system

24

Does not get better with distribution

A distributed system is the one that prevents you from working
because of the failure of a machine that you had never heard of.

[L. Lamport]
+ Since:
- Machines fail independently, for a start
- But they may influence each other,
- They communicate through unreliable networks, with
unpredictable delays
+ ...gathering machines renders the situation worse:

- The reliability (<1) of a system is the product of the individual
component reliabilities, for independent component failures

- R(10 @ 0.99)= 0.9910= 0.90; R(10 @ 0.90)= 0.9010= 0.35

of

2.5

Faults, Errors and Failures

A system failure occurs when the delivered service deviates from
fulfilling the system function

An error is that part of the system state which is liable o lead
to subsequent failure

The adjudged cause of an error is a fault

EXAMPLES:

- Fault --- stuck-at '0' RAM memory register

- Error --- what happens when the register is read after '1' is written

- Failure --- the wrong reading ('0’) is returned to the user buffer
SOLUTIONS?

- Remove the faulty memory chip

- Detect the problem, e.g. using parity bits

- Recover from the problem, e.g. using error correcting codes (ECC)

- Mask the problem, replicating the memory and voting on the readings

PP © 2002:08 Paulo Verissimo - All ights reserved. g unauthorized reproduction in any form _g 2.7

Can get much worse with malicious failures

* Failures are no longer independent
* Failures become more severe

+ Fault models become less representative

... Hackers don't like stochastics ...

of

2.6

sequence fault— error— failure

error failure

>
>

Y

P E[Tin Distribyied Svstems @K

Achieving dependability

+ Fault prevention
- how to prevent the occurrence or introduction of faults
* Fault tolerance

- how to ensure continued correct service provision despite
faults

Fault removal
- how to reduce the presence (number, severity) of faults
* Fault forecasting
- how to estimate the presence, creation and consequences of

Types of Faults

* Physical

+ Design

+ Interaction (*)

+ Accidental vs. Intentional vs. Malicious (*)
+ Internal vs. External

* Permanent vs. Temporary

+ Transient vs. Intermittent

(*) Especially important in distributed systems and security

faults
29
Dependability measures
fault '%7/%,’
540“
d%ig_n/ faull_ fault
............ k& FANS
fault prof:’ergging treatment

removal

PP 2002-08 Paulo Verissimo = All rights resetved. no unauthorized reproduction in any form iU R U1

e Inte ef
Interaction Fault classification
(specially important in distributed systems)
Omissive
- Crash {ARBEITRARY
+ host that goes down
- Omission
+ message that gets lost
- Timing
+ computation gets delayed
Assertive
- Syntactic

*+ sensor says air femperature is
100°

- Semantic

* sensor says air femperature is
26° when it is 30°

%0 2002-08 Paulo Verissimo - All rigts reserved, no nauthorized reproduction in any form _g 212

=
Dependability properties f
+ Reliability

- the measure of the continuous delivery of correct service (ex.
MTTF)
* Maintainability
- the measure of the time to restoration of correct service (ex.
MTTR)
* Auvailability
- measure of delivery of correct service with respect to

alternation between correct and incorrect service (ex.
MTBF/(MTBF+MTTR))

+ Safety

- the degree to which a system, upon failing, does so in a hon-
catastrophic manner

%G 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form _sllP X L]

—— of
Forms of redundancy

* Space redundancy
+ Time redundancy

* Value redundancy

Error processing techniques

* error detection
- detecting the error after it occurs aims at: confining it to
avoid propagation; triggering error recovery mechanisms;
triggering fault treatment mechanisms
* error recovery
- recovering from the error aims at: providing correct service
despite the error
backward recovery:
the system goes back to a previous state known as correct and
resumes
forward recovery:
the system proceeds forward to a state where correct provision
of service can still be ensured
+ error masking

- the system state has enough redundancy that the correct
service can be provided without any noticeable glitch

PP 2002:08 Paulo Verissimo = All rights resetved. no unauthorized reproduction in any form iU R}

W_FIT in Distribyted Systemsd
Foundations of modular and distributed fault tolera%

- graceful degradation @
* Replication

- software vs. hardware Im alive
- fine granularity
- Resource optimization
+ incremental T/F by:
- class (omissive, semantic)
- humber of faults
- humber of replicas
* pairs, triples, efc.
- Type of replica control
* active, passive
+ round robin, voting

+ Topological separation
- failure independence

Example Fault Tolerant
Networks and Architectures

%6 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form gl Y1)

P E[Tin Distribyigd Svstems @K

Redundant Media Networks

Host

Host Host| Host|
t 5
[PHY] [PHY]
) |t (s :H/~* :
Host || <—l-_“r’ il:._)__.

AHd | [AHd|
I
S
2

P

|PHY| |PHY|

X

§

(a) (b)

222

Redundant Networks

Host

Nac

NAC| [NAC

Host Host|

(@

(b)

e edun: ef
Redundant Storage and Processing

P E[Tin Distribyied Svstems @K

Error Detection and Masking

2.24

Client-Server with FT Servers

of

2.26

Modular Distributed FT with Replica Sets

@K

225

of

FT Publisher-Subscriber

Subscribers
Publishers o]

S,

Fault-Tolerant
sz Publishing
§ Server—/

PERSISTENT
MESSAGE BUS

227

Distributed fault tolerance
paradigms

228

Failure detection @K

properties and problems

+ consistency of distributed failure detection is a must:

- when a process goes down all the other processes know about
it and can coordinate their actions to implement corrective
measures.

+ Strong Accuracy

- a safety requirement, specifying that no correct process is
ever considered faile

* Strong Completeness

- a liveness requirement, specifying that a failure must be
eventually detected by every correct process

* If perfect channels are available, heartbeat exchanges
meet strong accuracy and strong completeness
* Such a detector is called perfect failure detector :

- If a node crashes all correct nodes will note the absence of
the heartbeat at the same time and will detect the failure.

Failure detection

Crash failure detection:
- How to detect a node stopping?
Mechanisms:
- Heartbeats or Probes
Heartbeats
- observed component periodically sends messages
Probes
- observed component waits for a probe message and replies
Decentralisation

- ideally any process plays the role of an observer (to monitor
the activity of other processes) and of a target (i.e., it is
monitored by all the other processes)

2.29

PP 2002:08 Paulo Verissimo = All rights resetved. no unauthorized reproduction in any form _gilb R V1

Failure detection @K

properties and problems

+ channel imperfection impossible to overcome:
- the lack of bounds for the timely behavior of system
components (processes or links) - called asynchrony
+ “funny” consequence:

- no way to distinguish a missing from “extremely slow"
heartbeat

- happens if a link can delay a message arbitrarily, or if a
process can take an arbitrary amount of time to make a
processing step

- perfect failure detection cannot be implemented in
asynchronous systems!!!

- problem is that for practical purposes, Internet “is"
asynchronous

PP 2002-08 Paulo Verissimo - All ights reserved, no unauthorized reproduction in any form gl RV}

Failure detection @K

properties and problems

- something in between
+ Weak Accuracy

- at least one correct process is never considered failed by all
correct processes

+ Weak Completeness

- a failure must be eventually detected by at least one correct
process

* even the above is impossible in asynch systems:

+ Eventual Weak Accuracy

- there is a time after which some correct process is never
considered failed by any correct processes

P_ELT in Distribyfed Systems o)
Primary Partition of

* primary partition
- only partition that makes

process
* how best done: ”
- Tllqe one with the majority of p= J ’
elements J J
- caveat: W)

- network can be partitioned in O < f) J
such a way that no primary

partition can be identified

- the system blocks completely
until the partitions merge

e of
Problem of Partitioning

* partitioning is caused by the crash of one or more links
that split the network in disjoint subsets or partitions

- processes within the same partition are able to communicate
among themselves but unable o communicate with processes
in other partitions

- serious problem because it prevents processes in different
partitions from coordinating their activities

* remedies:
- allow progress in all partitions, which causes state divergence,
which is reconciled after healing
- allow progress only in one partition
+ +: prevents state divergence
+ - blocks all processes in the other partitions

2.38

Consensus properties (recap)

+ Validity
- if a process decides v, then v was proposed by some process
- ho process decides more than once
* Agreement
- No two correct processes decide differently
*+ Termination
- Every correct process eventually decides

+ Consensus is equivalent o atomic broadcast
- That is, one can implement one with the other
- Does not mean that all such implementations are efficient!

P E[Tin Distribyied Svstems @K

Fault tolerant consensus
(intuition)
easy solution:
- coordinator (pl) sends decision (a), p:’f"ﬂi’

followers accept

failure of coordinator: (b)
- pick next (p2), who sends its initial value (b)
serious problem:
- if coord crashed during dissemination, some p3
may have (a) and others (b)
- violates consensus properties pa (@
solution:
- only decide when sure only one value pending
how to /ock such a decision?

241

W_E[Tin Distribyted Svstemsd -
Fault tolerant consensus OK

(intuition)

* previous solution only works with a reliable failure
detector

* which cannot be implemented in asynchronous systems

- consensus (and thus atomic broadcast) is not solvable
in asynchronous systems

+ consensus only solvable in systems with at least an
eventually weak failure detector, as long as a majority
of processes do not crash.

PE[Tin Distribyied Systems @K

Fault tolerant consensus
(intuition)

When a process receives the propose(a) decided(a)

initial value from the p1 %

coordinator, it changes its //‘ \

initial value to that of the p2 acgepa) ‘
p3 0 2

coordinator
cdept(a)

any sequence of recovery

decided(a)

coordinators will use same &) ;
value, if it had been proposed " L 74 ept(a) \a%ept(a) \
)

protocol:

- coordinator sends its value o every other process
- processes update their initial value and send an ack back to coordinator

- \'Nhindcoordina’ror receives ack from every process, it knows the value is
ocke

- even if it crashes, the new coordinator will also propose that same value

- coordinator has to disseminate a decided message to inform the
remaining processes of that fact

- aprocess that receives decide can safely decide on that value

242

Fault tolerant consensus

(with an eventually weak failure detector)

* protocol:
- similar to the protocol described above

- coordinator simply waits for a majority of acknowledgments to
lock a value, instead of all acks

- allows the system to make progress as long as a majority of
processes can communicate

- ho matter whether remaining processes are crashed or slow

+ coordinator failure
- another process pj becomes the coordinator
- old coordinator pi may have locked a value without pj knowing
- but majority of processes will know that such a previously
locked value exists
- hew coordinator has to contact a majority of processes in
order to “"check" that, else he can propose his own

P 2002-08 Paulo Verissimo - All ights reserved, no unauthorized reproduction in any form gl 'V}

Membership
(recap)
group membership
- set of processes belonging to the group at a given point in
time
membership service:

- keeps track of membership and provides info to group
members

group view:
- subset of members mutually reachable at a given point
* group membership is often dynamic:

- in response fo user demand or changes in the runtime
environment (load, failures, etc)

- it may grow, by letting new processes join the group
- it may shrink, by letting members leave the group
- view changes when processes fail or when they recover
P ©2002.08 Paulo Verissimo - All ights reserved. no unauthorized reproduction in any Torm g Y

Linear membership o

vi

Linear Membership

- the history of views delivered to any correct process is a prefix
of the history of views delivered to all correct processes

- characterized by enforcing a total order on all views
- all correct processes receive exactly the same sequence of views

easy to enforce on synchronous systems

SR of
Membership under faults

group membership is a form of distributed agreement
and as such is a hard problem in the presence of faults
consistent membership view:
- if membership of the group unchanged and there are no link
failures, all members should obtain the same group view
even this simple predicate can be hard to enforce
- membership heavily relies on failure detection
- inaccurate or unreliable failure detection may cause
membership to have erratic behavior
another important predicate is the order in which view
changes should be seen by all

PP 2002:08 Paulo Verissimo = All rights resetved. no unauthorized reproduction in any form gl JIT'

P_EIT in Distribyied Systemsdg
Linear membership issues o

linear membership not easy or desirable in partitionable
systems:
- should keep delivering views in both partitions

- group view splits and merges in response to changes in the
network connectivity

- views become partially ordered, and sometimes overlap in
different partitions

* the idea is to find a useful partial view ordering paradigm

st of
Strong partial membership

Vi V2Jl V3

@ ® D

[. ®

) "%\ | o
D

Strong Partial Membership

- concurrent views hever intersect, e.g., V2 and V'2 correspond to
two completely disjoint partitions, which later merge into V3

- Strong partial membership supports virtual synchrony

2.51

F/T Communication

(Resilience to Link and Sender Failure)

p P P

2
=
=
/’
<

(a) (k) (c)

(a) Unreliable multicast
- ho effort is made to overcome link failures, it is as reliable as
the link and the sender are
-+ (b) Best-effort multicast
- sender takes some steps to ensure the delivery of the
message, like retrying or repeating, but not if sender fails
+ (c) Reliable multicast

- participants coordinate to ensure that the message is)
delivered to all correct recipients, including when sender fails

2.53

F/T Communication
(Communication Error Processing technigues)

Ttom
[k=1] [k=1] — [k=1]

e S N
e, b VY AN e 1 [AN/
S N N e Y A

(a) (b) ()

Communication Error Processing techniques:
(a) Masking (Spatial);

(b) Masking (Temporal);

(c) Detection/Recovery

P ©2002:08 Paulo Verissimo - All rights reserved. no unauthorized reproduction in any form il Xoy3

Reliable multicast

* A reliable multicast protocol is defined formally in terms
of the following properties:
- Validity:
- If a correct process multicasts (sends) a message M then some
correct process in group(M) eventually delivers M.
+ Agreement:
- If a correct process delivers a message M then all correct
processes in group(M) eventually deliver M.
* Integrity:
- For any message M, every correct process p delivers M at most
once and only if pis in group(M)
- If process p delivers M and sender(M) is correct, then M was
previously multicast by sender(M).

of

2.54

ST of
Byzantine agreement (BA)

(tolerating semantic faults)

+ A fundamental problem illustrating how hard it is ...

- a number of generals, in face of an enemy army, must decide
whether to attack or to retreat, but they cannot meet, they
can only do so by sending messages fo each other

- most of these generals are loyal to each other (correct) but
some are traitors (faulty).

- in the presence of favorable conditions, the combined force of
the loyal armies can defeat the enemy.

- however, unless all loyal generals attack together, their troops

will be defeated.

traitors will, maliciously, try to prevent agreement from being

reached.

- traitors may invent messages, omit some or all messages, send
conflicting information, etc.

PG 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form il Y.L

Byzantine agreement

received by A . traitor

retreat

attack

+ Scenario:

- three generals, two of them loyal

- loyal generals: A, wishes to attack; B, believes they must retreat.

- A receives two refreat messages, one from B and one from traitor
* intuitively, with majority vote, a correct decision should be

possible, right?
- if we discarded traitor's opinion, decision would be retreat (tie)
- Unfortunately, A cannot safely decide

P ET i Disurbiics Systemsd OK
Byzantine agreement
(tolerating semantic faults)

+ assume that the BA protocol operates in rounds.
* in each round, generals send messages o each other

* loyal generals must agree on a single binary value
(attack/retreat) despite the action of traitors

* loyal generals have pre-agreed that they should follow
the majority and, in case of ties, retreat

+ the initial value proposed by each loyal general consists
of his own assessment of the correct decision: fo attack
or retreat

* How many traitors are sufficient to prevent agreement?

P ©2002:08 Paulo Verissimo - All rights reserved. no unauthorized reproduction in any form il XT3

2.57

PE[Tin Distribyied Systems
Byzantine agreement S
messages messages
received by A traitor received by B traitor
retreat . attack

X = 2
(D (2 (a) = (B
(A ’ retreat . B) :) > \) loyal

attack

* Why can't A safely decide? /

- traitor can send a conflicting’message to B supporting A's proposal
to attack

* A simple majority would force A fo retreat and B to
attack!
- For A: < attack, retreat, retreat > => retreat
- For B: < attack, retreat, attack > => attack

* i.e., 2f+1 are not enough, for f traitors

retreat

2.58

Byzantine agreement of

traitor R traitor
. cn . cry)
0 1 1 | 1

V‘,

(a0) «——— (B (— > (BN
{ 1 B/) .\A/o) 7 B ’
0/ 1D

messages received by A messages received by B

* Let us add an additional loyal general to the system
- 'retreat’ is 0 and 'attack’ is 1; four generals, three of them loyal
* Maj of loyals, so it must work, but ... not in one round

- by sending an attack vote to B and a retreat vote to A, the traitor can
force A and B to disagree

* but we need an additional round of messages

- For each sender p, the other three remaining processes exchange the
values they have received from p to agree on the value sent by p

BA is possible with n=3f+1, for f faults, in worst-case f+1 rounds

PG 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form gl ¥/

Replication management

(partition-free systems)

R o
Replicated computations

+ decentralized fault-tolerant applications may run
replicated pieces of code which should behave in the
same way

* replica determinism:

- two replicas, departing from the same initial state and subject
to a same sequence of inputs reach the same final state and
produce the same sequence of outputs

+ atomic broadcast:
- guarantees "same sequence of inputs” objective
- the rest lies with the replica itself
* issues:
- deterministic coding
- state divergence with partitioning
- replica failure and recovery

P © 2002:08 Paulo Verissimo - All rignts reserved, no unauthorized reproduction in any form gl ¥}

2.66

State Machine programming

+ Characteristics

- confinement - atomic commands

- fault tolerance - easy replication @
- Execution model

- servers start in same state

- execute same sequence of input commands, in
same order

- commands modify state variables and produce
outputs (I/0 or return results)

- THEN: all follow same sequence of
state/outputs
* Programming
- message-based, diffusion (multicast)
- requires deterministic execution
- open-loop
- reduces concurrency if cmds are long

m4

INPUT
QUEUE

m3
m2

STATE
@ MACHINE

OUTPUT

2.67

R of
Replicated State Machine

(active replication)

* replicated state machine:
- all replicas execute at same time
- achieves error masking
- determinism mandatory
* replica quorums:
- benign communication
- omissive process failures - f+1 replicas
- affirmative process failures - 2f+1
replicas
* message ordering:
- total order of commands to replicas

- same commands in same order => same
results

REPLICATED
STATE
MACHINE

2.68

* passive replication
- only Primary executes

Replicated State Machine
- in the order it decides

(passive replication)
|
- supports preemption and non- /\

determinism (active rep. doesn't) P1 - PRIMARY P2- BACKUP

- state transferred to Backup(s)

- inter-replica deferred state-level
synchronization (checkpoints)

- Backup(s) log commands until
checkpoint received

- Primary fails: Backup assumes

- potentially long takeover-glitch
* message ordering:

- nhon-ordered message diffusion

@K

2.70

R o
Replicated computations

(issues)

* non-deterministic component
- state and behavior depend not only on the sequence of
commands it executes but also on local parameters that
cannot be controlled.
* many mechanisms can cause a non-deterministic
behavior:

- non-deterministic constructs in programming languages such as
the Ada select statement;

- scheduling decisions; resource sharing with other processes;
- readings from clocks or random number generators; etc.

+ state of two non-deterministic replicas may diverge
even when they execute same sequence of inputs
PC 200252 Pio Verissimon AT G reserved ho upauthorizad reprocucton n any Torn__gPYY

Replication management
(partitionable systems)

2.72

Rationale

one should ensure consistent service even when some

replicas become mutually unreachable
- for networks where partitions can occur

PG 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form il Y X1

PE[Tin Distribyied Systems
Replicated computations

(issues)

- state divergence with partitioning
- with partitioning, cliques of replicas may mutually think they

are dead, and continue computations independently
+ one way to solve is to ensure computations only
proceed in a primary partition
- most consistent but also less available way
* another common way is to gather votes or quorums of a
minimum number of replicas that guarantee progress

with some tradeoff with consistency
- nothing to do with value masking but with progress

274

@K

P/_ELT in Distribyted Svstemse
State Divergence with Partitioning

ition m1 M erge
ParttoF% \ 1) 9% [p,q\,r]

{Si}
p

\ :
x i
IECLIY \ sy f
| ;
.]
"

‘ what State, S1 or S22 (S1 #52) ‘

- partitioning occurs, p,q execute cmd ml and assume state Sl

- r executes cmd m2 and assumes state S2

- What is system state after merger?
- e.g., if ml and m2 produced conflicting results, it is impossible to find a
coherent common state without manual reconciliation (application

PP 2002:08 Paulo Verissimo = All rights resetved. no unauthorized reproduction in any form iRt

dependent)

of

P_EIT in Distribyied Systemsdg
Avoiding State Divergence

primary partition
Partition m M erge
[p,a.r]
% \. {s1} 9% L

{Si}

p S
{si} \ {S1} Update()

q
{Si} M IN {Si}
r I
f Blocked!
m2d -«
o

‘ State is of Maj Partition everywhere: S1 ‘

- abefore, but now only primary partition continues executing

- PP has majority of replicas, i.e. <p,g>

- <r> stays blocked in state Si
- <p,g> continues, processing m1, and goes to state Sl

- after merger, <r> requests state update to set <p,q>

- since Si (of <r>) is a prefix of S1, there is no divergence
P 2002-08 Paulo Verissimo = All rigts reserved, no unauthorized reproduction in any form gD Y(3

Static voting and quorums

DATA REPOSITORY

+ given operation should only be

. QUORUM Q,
allowed fo proceed if a 5
minimum quorum of replicas = l l
can perform it =
. . REQ T l REPLY
* quorum formation rules:

- two conflicting operations must] 1 1]
always intersect in at least one =P =¥ =P =p
replica CLIENTS

- this common replica ensures
outcome of first operation is
available to all replicas executing
the next operation

- most current state identified by
version numbers incremented by
each replica upon un update

of

SERVERS (N)

1
=

PG 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form gl Y b/

Quorum algorithms
(Weighted voting intuition)

2w>n
- supposen=7,w=5andr=3
- write to partition containing replicas summing
at least 5 votes
- 2 votes left, not enough fo write divergently in
other partitions
w+rs>n
- reads and writes to same item, different
partitions, are serialized
- e.g., write occurs first (5 votes), so read must
wait (2 votes left, read needs 3 votes)
- 80, read is sure to include at least one of the
replicas that have seen previous write

- this replica can update the others, ensuring
sequential consistency of the history of
operations

2.81

of

uorum algorithms
Q (We/_'thedgvaﬁng)

+ each copy is assigned a humber of votes

* quorums are defined based on the number of votes
instead of the number of replicas

+ overlapping guarantee rule: 2w >nandw +r>n
* why?
- n the total number of votes

- sum of quorums for conflicting operations on an item should
exceed the total humber of votes for that item (to yield a
common replica)

PP 2002:08 Paulo Verissimo - All rights reserved, no unauthorized reproduction in any form P MU

Replication management

(recoverable systems)

2.84

Rationale

- one should ensure consistent service even when some
replicas become mutually unreachable
- for systems where replicas can crash and later recover

Recovery

* recovery from crashes requires that the recovering
replica recovers current state of the other replicas

* without stable storage:

- cooperative recovery (state transfer) from other replica(s)
without stable storage

- complete state transfer can make recovery be very long

+ with stable storage:
- recover some past state Sx before failure

- cooperative recovery (command log transfer from Sx) from
other replica(s)

- state recovery is much shorter
- execute from log of commands until current state

2.87

S o
Replicated computations

(issues)

* replica failure and recovery
- when a failed replica recovers, it has an old state
- how to synchronize with live replicas?

Replica failure and recovery

m m,

e T\\s CIN N
P; \.; f \\\'s, [\\:':;:)
NZR- /A

Reanter Re-onter ogm wem

R‘wv"y o . activiey

- recovering replica (p3) starts by resuming communication with the replica
set, e.g. if the set was using some form of group comm's
- it starts receiving all messages, but still discards them

- next, sends a request to join the replica group activity, delivered in tota/
order to all replicas, including the joining replica, marking a cut Sj in the
global system state request is which triggers a state-transfer operation

p2 checkpoints its state at this point (Sj), and sends it to p3
p3 starts logging any messages that arrive after the cut Sj
New requests (mk) can continue to be processed by all replicas except p3

of

2.88

P_ELT in Distribyfed Systemsdg)
Checkpointing o(

(checkpoint-based rollback-recovery)

* checkpoint:

- during normal execution, state is saved at times to prevent log
from growing too much or when important actions are done

+ rollback:

- upon recovery after having crashed, the component reads the
last checkpoint and resumes operation from there

* consistency

- checkpoints in a distributed system must lead back to a past
consistent global state, called recovery line

+ inconsistent global state

- Clat pland C2 at p2 are mutually inconsistent if C1 contains
message m sent by pl to p2 but €2 has no record of sending m

PG 2002-08 Paulo Verissimo = All rights reserved. no unauthorized reproduction in any form gl -1’

Checkpointing
(domino effect)

__Recovery Line @ ®

P_EIT in Distribyfed Systemsd)
Checkpointing oK

(issues)

* uncoordinated checkpoints

- rollback, if uncoordinated, may bring the computation way back,
called domino effect

- recovery gets immensely slow

+ domino effect

- rollback of one process meets an IGS, forces rollback of
another process, which in turn forces first process fo rollback
again, and so on

+ coordinated checkpoints

- so most schemes are coordinated, having the processes
coordinate to meet a C6S before taking the checkpoint

- thus, after crashes, only need to rollback to last checkpoint

PP 2002:08 Paulo Verissimo - All rights reserved, no unauthorized reproduction in any form il X1

1. p1 fails, and then recovers, rolling back to checkpoint Ca
2. evidence of sending message mi no longer exists
3. so, p2 is forced to rollback to checkpoint Cb
4. however, this "unsends" message mj and p3 is forced back to Cc
5. rollback propagation will bring system back to initial state
291
P ETin Distribyted Systemsd

Resilience OK

* qualitative aspect:

- the kind of faults to be tolerated, for example whether or not
the system can partition; or whether time- or value-domain
faults are assumed.

* quantitative aspect:
- concerning the number of faults to be tolerated (f)

e Dete of
Detecting/Masking value errors

* tolerating value faults:
- different sources of the same “logical" value must be available
in the system, so that their values can be compared or voted
+ voting is simple when values can be compared bitwise
- vector of values is applied a deterministic function
- exact (bitwise) agreement not always possible
- when two correct replicas produce different values
- e.g., vector of values is the result of analog sensor readings
* Inexact Agreement
- convergence function must be performed on whole vector
- each run computes a right value, maybe neither of the initial
values, maybe different from replica to replica
- e.g., clock synchronization is another example of inexact
agreement

293

Atomic Commitment
(re-cap)

prepare | commit prepare |abort

coord 1 coord 1
vl imviviss
p2 Mk ! / 02 x ok \chk

ack
\ \

\ \ \
p3 —_W/ok /K p3 __W/notok q/ék

+ Two-phase Atomic Commitment Protocol:
- (a) commit
- (b) abort

of

Convergence functions

I-(>-I EE0 b D@n

F/T midpoint F/T average

f=

* tolerate up to f faulty values in a vector of n entries

* Fault-tolerant Midpoint
- selects the midpoint of the values collected after discarding
the f highest and f lowest values.
- Requires at least 2f + 1 values, 3f + 1 with non-masked
Byzantine faults
* Fault-tolerant Average
- selects the average of the values collected after discarding
the f highest and f lowest values
- Requires at least 2f + 1 values, 3f + 1 with non-masked
Byzantine faults

PP 2002:08 Paulo Verissimo - All rights reserved, no unauthorized reproduction in any form il XV

2.95

Atomic Commitment

(2-phase commit window of vulnerability)

prepare commit
coord T4 4 4
p1 _N ok W ack
p2 W ok ?
?
p3 ok

Two-phase Commit Protocol blocking scenario:
- coordinator fails in middle of commit: says commit just to some (p1)
- pl committed and then also failed
- remaining participants will be blocked waiting for the decision
- they cannot abort: coordinator might have said commit to some (as it did)
- only when the coordinator recovers can a safe decision be taken
- these failure scenarios may also take place if the system partitions.

2.96

Atomic Commitment
(non-blocking 3-phase commit)

prepare pre-commit commit
coord | AA A AR A X
Pl g ¥ ack W sck

P2 W ok ‘ock
p3 ok ¥y ock ’

+ Three-phase Commit Protocol (non-blocking):

- idea is to delay the final decision until enough processes “know" which decision is

about to be taken

- coordinator sends a pre-commit message to all processes and waits for an

additional round of acknowledgements, only then the commit is sent

- if coordinator fails before issuing commit, remaining processes may resume the

operation since they have received the pre-commit message.

- 3-phase commit is much more resilient than 2-phase, at the cost of performance

297

