

3

Fault Tolerant Computing Models and Systems

3.1

Classes of failure semantics

- · Arbitrary Failures or No Assumptions
- Fail-Silence or Crash
- · Weak Fail-Silence or Omissive
- Crash-Recovery

Basic fault tolerance frameworks

- · Hardware Fault Tolerance
- · Software-Based Hardware Fault Tolerance
- · Software Fault Tolerance
- · Fault-Tolerant Communication

3.3

Classical fault tolerance strategies

- · Fault Tolerance versus Fault Avoidance in HW-FT
 - tradeoff between reliable but expensive components and less performant and more complex mechanisms
- · Tolerating Design Faults
 - going beyond HW-FT, helpless with common-mode faults (e.g. SW)
- Perfect Non-stop Operation?
 - when no perceived glitch is acceptable

Classical fault tolerance strategies

- · Reconfigurable Operation
 - less expensive, when a glitch is allowed
- Recoverable Operation
 - cheap, when a noticeable but acceptable service outage allowed
- · Fail-Safe versus Fail-Operational
 - safety track--- when a fault cannot be tolerated, two hypothesis: shutdown, or contingency plan for degraded op. mode

3.5

Distributed Fault-Tolerant Computing models

Reliability of remote operations (network failures and remedies)

- communication error detection (ack):
 - reduce ambiguity to the server

3.8

.6

Reliability of remote operations (network failures and remedies)

- surveillance of communication with server (aya):
 - detect communication error in reply

Reliability of remote operations

(server failures and remedies)

- surveillance of communication with server (aya):
 - tell failure from slowness
- server fails before or after executing operation:
 - we cannot know whether or not it was executed
- solution: repeat request until getting a reply (at-least-once)?
 - ALO incorrect for non-idempotent operations

Reliability of remote operations

(server failures and remedies)

- solution: in doubt, request just once (at-most-once)
- stable memory registers improve AMO:
 - request IDs are stored in disc or NVRAM
 - marked executed or pending
 - when server recovers, it knows what it executed through the end

Reliability of event services (Volatile Channels)

f=2

- event diffusion is open loop
 - sender publishes to a group of destinations and goes on
- · reliability is given by degree of replication vs. failures
 - request goes to n replicas, first reply is enough
 - request is executed if no more than n-1 failures occur
- request is executed once and only once (exactly-once)

Reliability of event services (Persistent Channels)

- · event diffusion is open loop
 - sender publishes to a group of detinations and goes on
- reliability is given by stable storage
 - channel stores events for later retrieval, so publishers and subscribers do not need to be active at the same time
 - channel is storage media that preserves messages reliably
 - stable storage is F/T namely to crashes, can be implemented as a replicated set of servers

3.13

ISIS architecture and functionality

- · ISIS Toolkit
 - (basic protocols)
- · Reliable Distributed Objects
- Distributed News
 - (publisher-subscriber)
- Reliable NFS
 - (F/T distrib. file system)
- Distributed Resource Manager

ISIS Reliable Distributed Objects

Color C

DELTA-4 System

Definition and Design of a Dependable Distributed Architecture

- · distributed fault tolerance:
 - profit from geographical separation
 - replicate software, rather than hardware
- performance:
 - high performance intelligent network controllers
 - fast reliable broadcast protocols
- heterogeneity and portability:
 - supports several H/W, LANs and O.S manufacturers
- · group-oriented middleware
 - featuring rich communication primitive set
- · ODP object model

2 10

DELTA-4 System

Definition and Design of a Dependable Distributed Architecture

- · open:
 - reliable communication and replication management through OSI-ISO compatible protocols
- versatile application F/T:
 - make black- e white-box S/W F/T
- communications:
 - reliable and atomic multicast for transparent and distributed replication of S/W components
- dependability:
 - incremental different types and levels of replication coexist
 - features reliability, availability, security

3 20

2 21

Distributed and Replicated DBMS

- TMs address SCh-DM of appropriate node

advantages:

 performance and availability of DBMS improves with replication and distribution

· consistency vs. availability

- pessimistic vs. optimsitic concurrency control
- strong vs. weak consistency

3.2