

Some preliminary observations...

5.3

Should we bring the risk to zero?

- · Let us talk about classical prevention/removal
 - of the number and severity of the flaws of the system (vulnerabilities)
 - of the potential of the attacks it may be subjected to (threats)
- · We cannot make either arbitrarily low
 - too costly and infeasible
 - certain attacks come from the kind of service being deployed
 - certain vulnerabilities are attached to the design of the system proper
- · ...and the question is: should we?
- · can't we talk about acceptable risk?
- · doesn't the hacker also incur in a cost of intruding??!!

And can we?

 If we work on an all-or-nothing perspective, everytime we cannot assure something is completely secure, we have a problem of representation

(we don't know how to talk about "more or less secure" in formal terms)

5.5

What is Intrusion Tolerance?

- The tolerance paradigm in security:
 - Assumes that systems remain to a certain extent vulnerable
 - Assumes that attacks on components or sub-systems can happen and some will be successful
 - Ensures that the overall system nevertheless remains secure and operational, with a measurable probability
- In other words:
 - Faults--- malicious and other--- occur
 - They generate errors, i.e. component-level security compromises
 - Error processing mechanisms make sure that security failure is prevented

Trust and Trustworthiness

(support separation of concerns)

- Trust
- the accepted dependence of a component, on a set of properties (functional and/or non-functional) of another component, subsystem or system
 - a trusted component has a set of properties that are relied upon by another component (or components).
 - if A trusts B, then A accepts that a violation in those properties of B might compromise the correct operation of A
- Trustworthiness
- the measure in which a component, subsystem or system meets a set of properties (functional and/or non-functional)
 - trustworthiness of B measures the coverage of the trust of A

5.7

Trusted vs. Trustworthy

- Thou shalt not trust non-trustworthy components!
- \cdot B is Trustworthy in the measure its properties are met
 - ... and that coverage is never 1 in real systems...
- B should be Trusted only to the extent of its trustworthiness
 - trust may have several degrees, quantitatively or qualitatively
 - related not only with security-relat. properties (e.g., timeliness)
 - trust and trustworthiness lead to complementary aspects of the specification/design and implementation/verification process
- we should talk about trusted-trustworthy components

Intrusion Tolerance terminology and concepts

Fault Models

Methodologies Error processing Fault treatment

E 0

Attacks, Vulnerabilities, Intrusions

Intrusion

 an externally induced, intentionally malicious, operational fault, causing an erroneous state in the system

an intrusion has two underlying causes:

Vulnerability

 malicious or non-malicious weakness in a computing or comm's system that can be exploited with malicious intention

Attack

 malicious intentional fault introduced in a computing or comm's system, with the intent of exploiting a vulnerability in that system

interesting corolaries:

- without attacks, vulnerabilities are harmless
- without vulnerabilities, there cannot be successful attacks

Attack-Vulnerability-Intrusion composite fault model

Hence: attack + vulnerability → intrusion → error → failure
A specialization of the generic "fault, error, failure" sequence

AVI sequence : $attack + vulnerability \rightarrow intrusion \rightarrow error \rightarrow failure$

5.11

Intrusion Tolerance

Fault Models

Methodologies

Error processing Fault treatment

5

Achieving trustworthiness w.r.t. malicious faults (the classical ways...)

- Attack prevention
- Ensuring attacks do not take place against certain components
- Attack removal
 - Taking measures to discontinue attacks that took place
- Vulnerability prevention
 - Ensuring vulnerabilities do not develop in certain components
- Vulnerability removal
 - Eliminating vulnerabilities in certain components (e.g. bugs)

INTRUSION PREVENTION

5.13

Avoiding security failure canonical track: intrusion prevention

➤ sequence : *attack + vulnerability→ intrusion→ failure*

Avoiding security failure less canonical track: intrusion tolerance

> to be studied in this course ...

5.16

Intrusion Tolerance

Fault Models Methodologies

Error processing

Fault treatment

Processing the errors deriving from intrusions

error detection

- detecting the error after it occurs aims at: confining it to avoid propagation; triggering error recovery mechanisms; triggering fault treatment mechanisms
- E.g.: modified files or messages; phony OS account; sniffer in operation; host flaky or crashing on logic bomb

error recovery

- recovering from the error aims at: providing correct service despite the error
- E.g.: recovering from effects of intrusions

- 40

Processing the errors deriving from intrusions

backward recovery:

- system goes back to a previous state known as correct and resumes
- system suffers DOS (denial of service) attack, and re-executes the corrupted operation
- system detects corrupted files, pauses, reinstalls them, goes back
- system detects corrupted message signature, discards, send nack

Processing the errors deriving from intrusions

forward recovery:

- proceeds forward to state that ensures correct provision of service
- system detects intrusion, considers corrupted operations lost and increases level of security (threshold/quorums increase, key renewal)
- system detects intrusion, moves to degraded but safer op mode

5.20

Processing the errors deriving from intrusions

error masking

- redundancy allows providing correct service without noticeable alitch
- voting, Byzantine agreement; fragmentation-redundancyscattering
- sensor correlation (agreement on imprecise values)

Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis

E 2

ID: Error detection or fault diagnosis?

- · classical IDS have two facets under intrusion tolerance
- detecting errors as per the security policy specification
 - diagnosing faults as per the system fault model
- · consider the following example:
 - Organization A has an intranet with an extranet connected to the public Internet. It is fit with an IDS
 - the IDS detects a port scan against an internal host, coming from the intranet
 - the IDS detects a port scan against one of the extranet hosts, coming from the Internet
 - what is the difference?

A biologically inspired metaphor of intrusion tolerance

Courtesy Christian Cachin, MAFTIA consortium

E 24

Computer system under attack

· no flaws, no vulnerabilities

Example Intrusion-Tolerant Networks and Architectures

5.30

Trusted-Third-Party Security Server

Intrusion-Prevention Firewall

5.32

Firewalling

- Intrusion prevention device: prevents attacks on inside machines
- · Coverage: semantics of firewall functions, resilience of bastions
- End-to-end problem: are all internal network guys good?

5 33

- Intrusion prevention device: enforces confidentiality, integrity (authenticity)
- · Coverage: tunnelling method, resilience of gateway
- End-to-end problem: are all intranet guys good?

Secure Remote Operations

Other Example Intrusion-Tolerance mechanisms

Authentication, signatures, MACs

- Intrusion prevention device: enforces authenticity, integrity
- Coverage: signature/authentication method
- End-to-end problem: who am I authenticating? me or my PC?

Trusted Third Party (TTP) protocols

- Intrusion tolerance device: error processing/masking
- Coverage: semantics of protocol functions, underlying model assumptions, resilience of TTP

E 42

Communication and agreement protocols

- Intrusion tolerance device: error processing or masking (3f+1, 2f+1, f+2)
- Coverage: semantics of protocol functions, underlying model assumptions

. . .

Threshold cryptography

- Intrusion tolerance device: error processing/masking (f+1 out of n)
- Coverage: crypto semantics, brute force resilience, underlying model assumptions