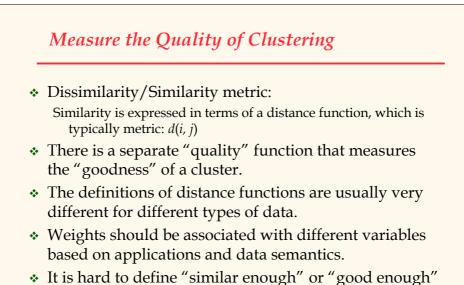


Requirements of Clustering in Data Mining

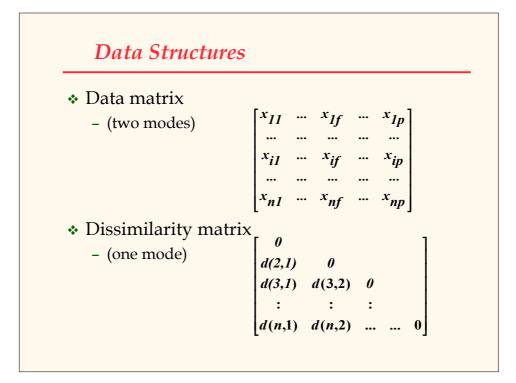
- * Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- * Able to deal with noise and outliers
- * Insensitive to order of input records
- High dimensionality
- * Incorporation of user-specified constraints
- Interpretability and usability

What Is Good Clustering?

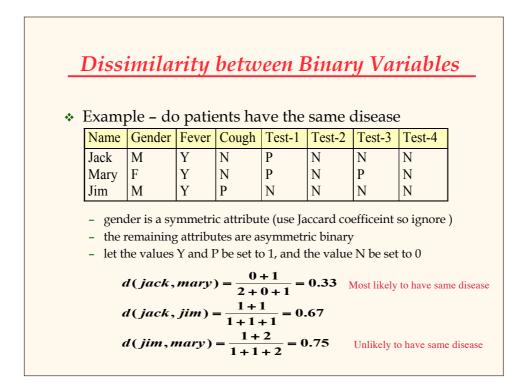
- A good clustering method will produce high quality clusters with
 - high <u>intra-class</u> similarity
 - low <u>inter-class</u> similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation.
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns.



- the answer is typically highly subjective.



Name	measure	dis/similarity
1- Minkowski Distance	$d_p(H, H') = (\sum_{m=1}^{M} h_m - h'_m ^p)^{1/p}$	dissimilarity
2- Euclidean Distance	$d_E(H, H') = \sqrt{(\sum_{m=1}^{M} (h_m - h'_m)^2)}$	dissimilarity
3- Cosine Distance	$d_C(H, H') = 1 - \frac{\sum_{m=1}^M h_m h'_m}{\sum_{m=1}^M h_m^2 \sum_{m=1}^M h'_m^2}$	dissimilarity
4- Histogram Intersection	$d_{\cap}(H,H^{'}) = \frac{\sum_{m=1}^{M} \min(h_m,h_m^{'})}{\sum_{m=1}^{M} h_m^{'}}$	similarity
5- Relative Deviation	$d_{rd}(H,H^{'}) = \frac{\sqrt{\sum_{m=1}^{M} (h_m - h_m^{'})^2}}{\frac{1}{2} \left(\sqrt{\sum_{m=0}^{M-1} h_m^{'}} + \sqrt{\sum_{m=0}^{M-1} h_m^{'2}}\right)}$	dissimilarity
6- Relative Bin Deviation	$d_{rbd}(H,H^{'}) = \sum_{m=1}^{M} \frac{\sqrt{(h_m - h_m^{'})^2}}{\frac{1}{2} \left(\sqrt{h_m^2 + \sqrt{h_m^{'2}}}\right)}$	dissimilarity
7- χ^2 -Distance	$d_{x^2}(H,H') = \sum_{m=1}^{M} rac{(h_m - t_m)^2}{t_m}$	dissimilarity
8- Kullback-Leibler Divergence	$d_{KL}(H, H') = \sum_{m=1}^{M} h_m \log \frac{h_m}{h'_m}$	dissimilarity
9- Jeffrey Divergence	$d_{KL}(H,H') =$	dissimilarity
	$\sum_{m=1}^{M} [h_{m} \log \frac{2h_{m}}{h_{m} + h_{m}^{'}} + h_{m}^{'} \log \frac{2h_{m}^{'}}{h_{m} + h_{m}^{'}}]$	
10- Bhattacharyya Distance	$d_F(H,H') = \sum_{m=1}^M \sqrt{h_m} \sqrt{h'_m}$	similarity



Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

Method 2: use a large number of binary variables

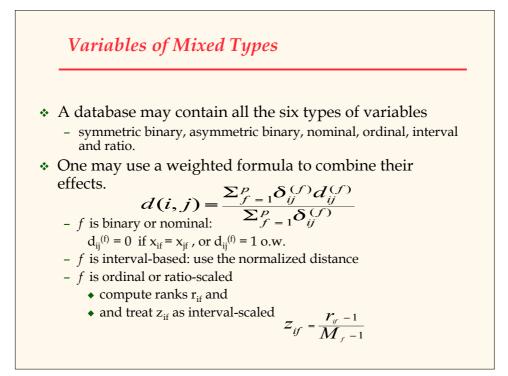
- creating a new binary variable for each of the *M* nominal states

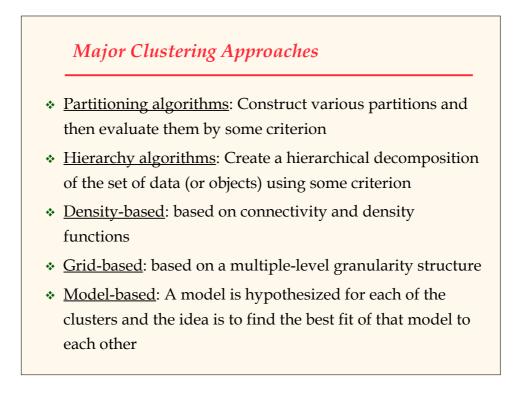
Ordinal Variables

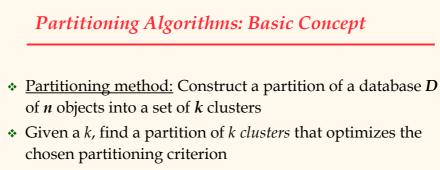
- * An ordinal variable can be discrete or continuous
- order is important, e.g., rank (gold, silver, bronze)
- * Can be treated like interval-scaled-use following steps
 - *f* is variable from set of variables, value of *f* for *i*th object is x_{if}
 - replace each x_{if} by its' rank $r_{if} \in \{1, \dots, M_f\}$
 - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

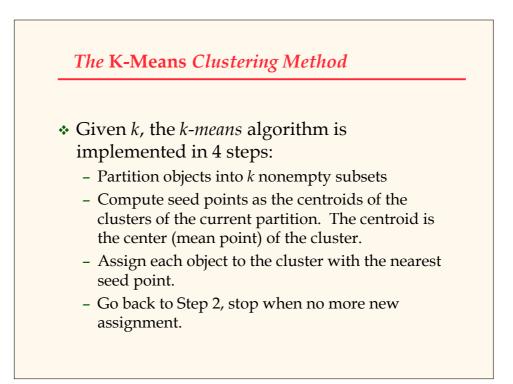
compute the dissimilarity using methods for interval-scaled variables

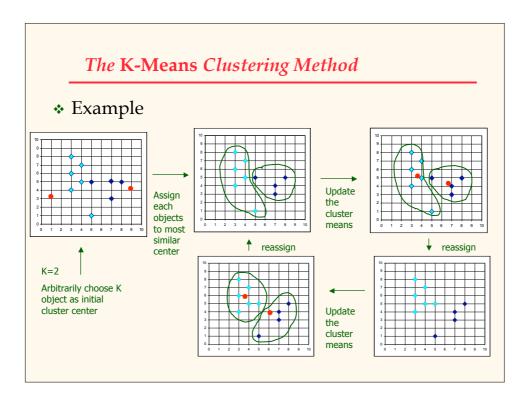


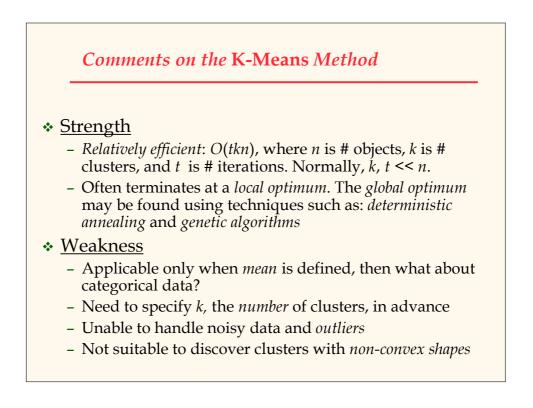


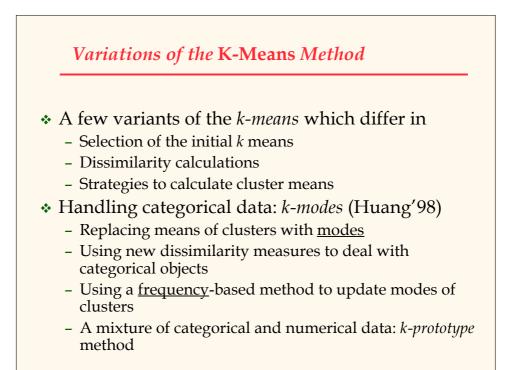


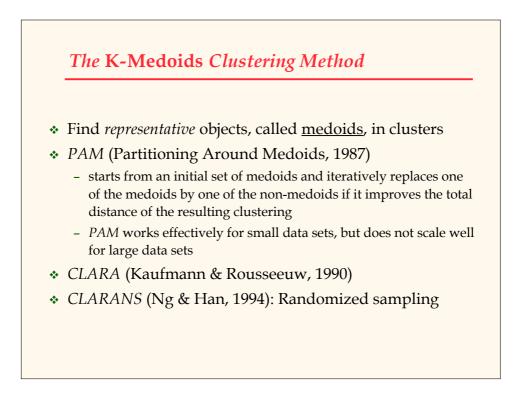
- Global optimal: exhaustively enumerate all partitions
- Heuristic methods: *k-means* and *k-medoids* algorithms
- <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
- <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

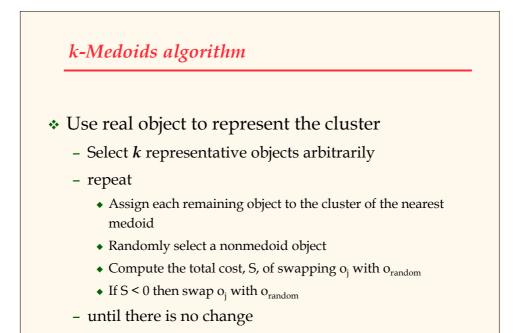


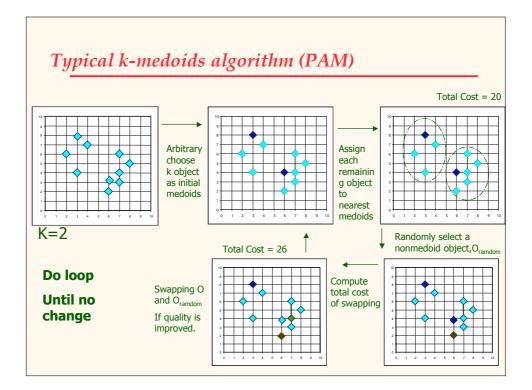


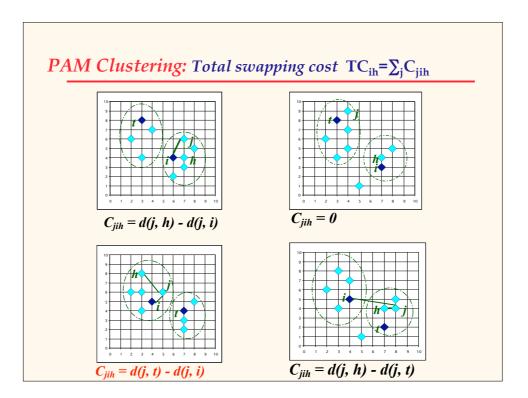


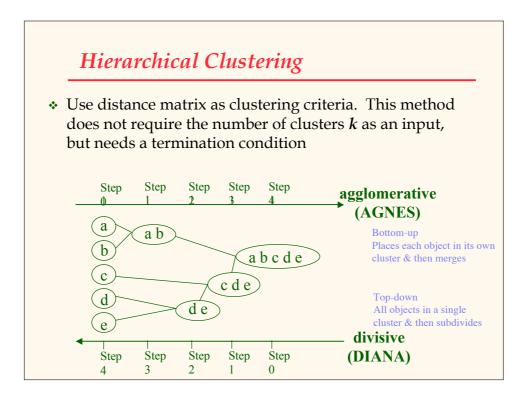


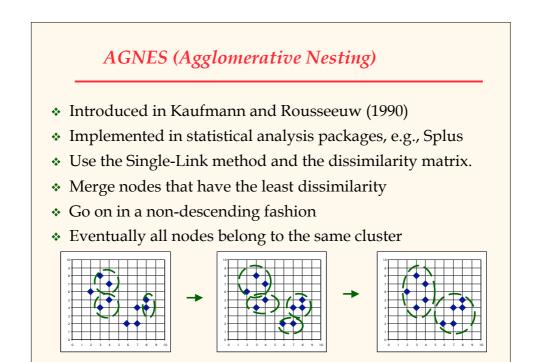


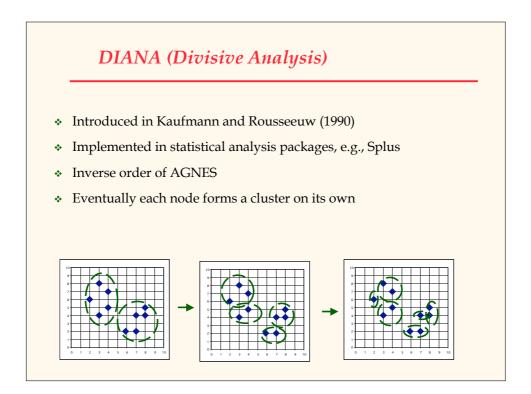


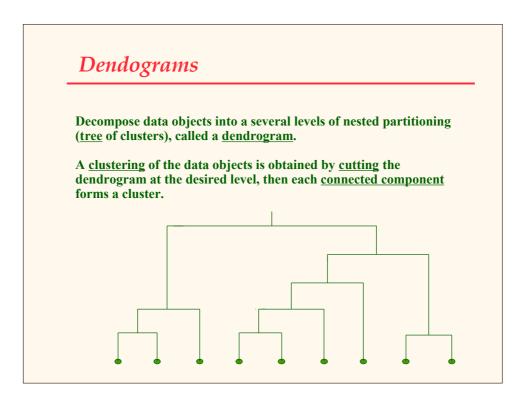


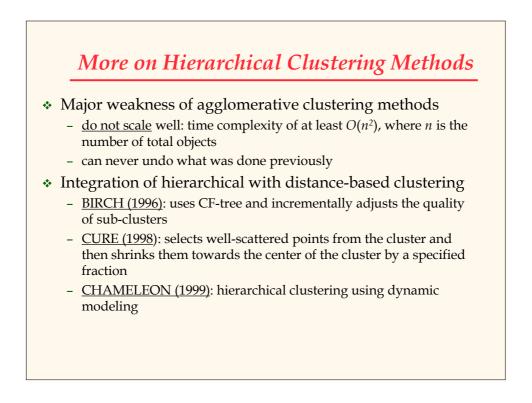


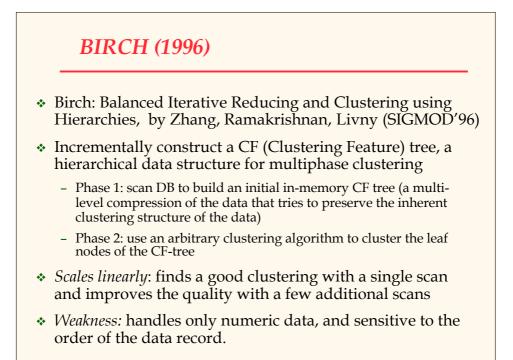


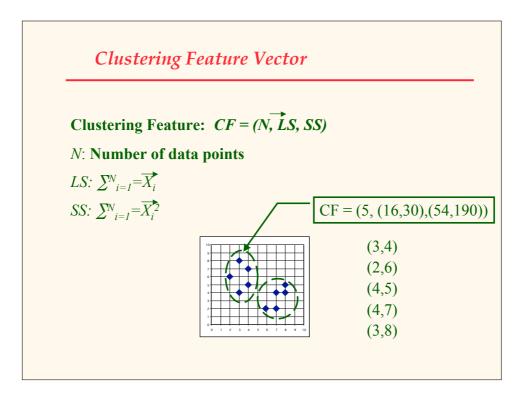






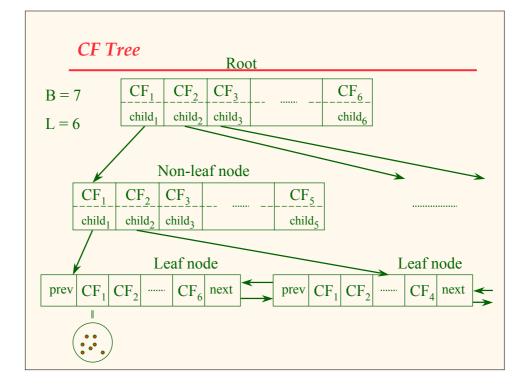




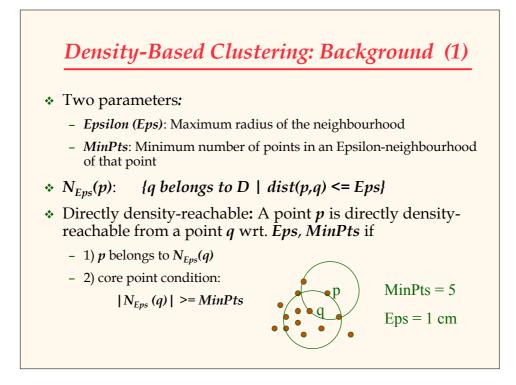


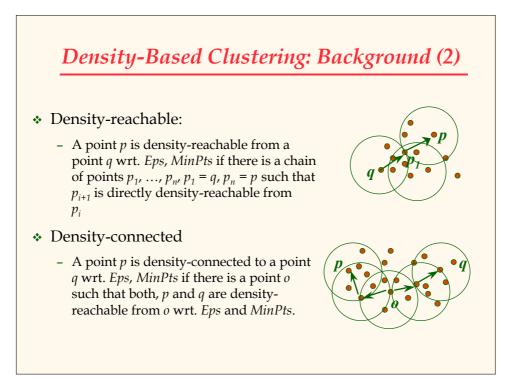
CF-Tree in BIRCH

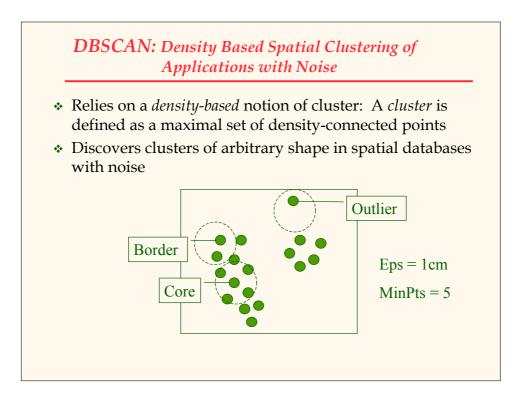
- * Clustering feature:
 - summary of the statistics for a given subcluster: the 0-th, 1st and 2nd moments of the subcluster from the statistical point of view.
 - registers crucial measurements for computing cluster and utilizes storage efficiently
- A CF tree is a height-balanced tree that stores the clustering features for a hierarchical clustering
 - A nonleaf node in a tree has descendants or "children"
 - The nonleaf nodes store sums of the CFs of their children
- * A CF tree has two parameters
 - Branching factor: specify the maximum number of children.
 - threshold: max diameter of sub-clusters stored at the leaf nodes



- Clustering based on density (local cluster criterion), such as density-connected points
- * Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - <u>OPTICS</u>: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98)

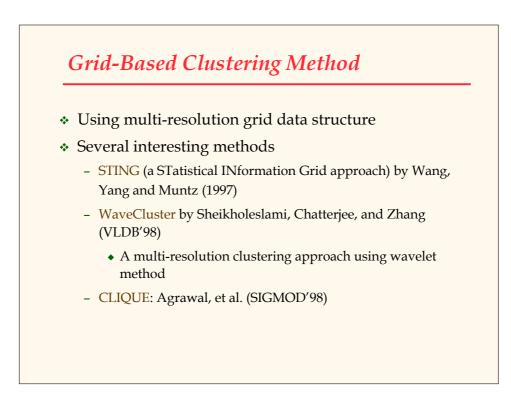


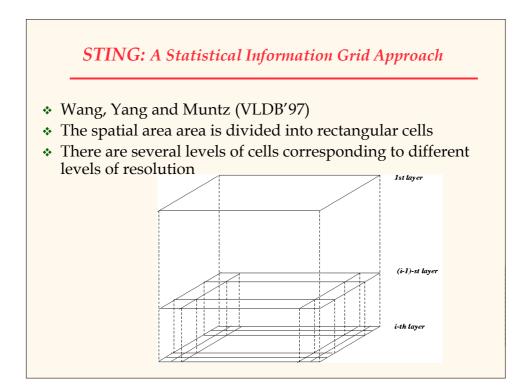


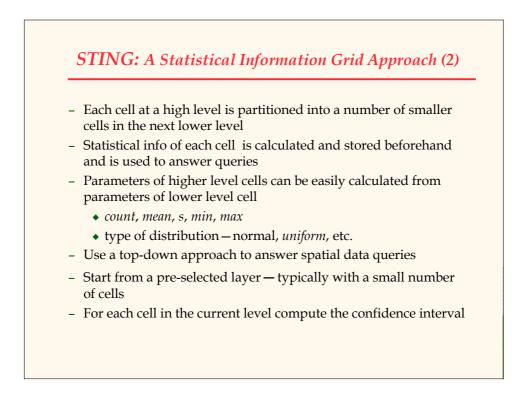


DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from *p* wrt *Eps* and *MinPts*.
- If *p* is a core point, a cluster is formed.
- If *p* is a border point, no points are density-reachable from *p* and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

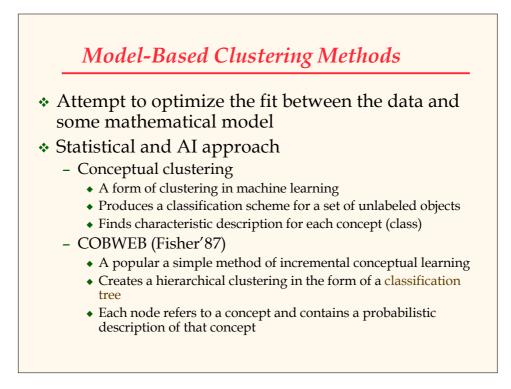




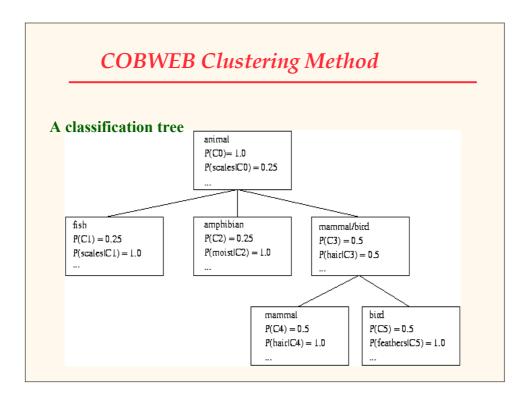


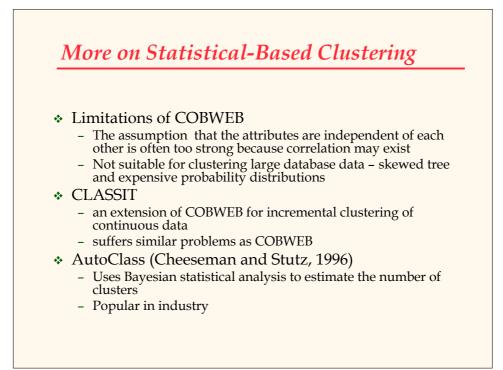


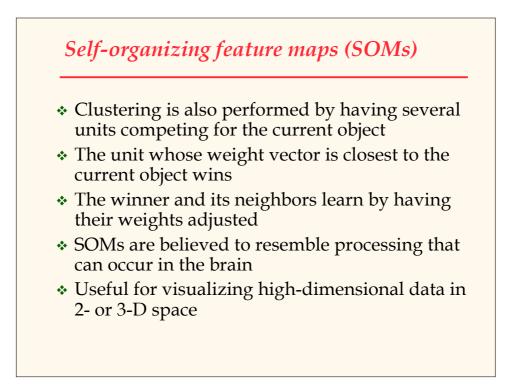
- When finish examining the current layer, proceed to the next lower level
- Repeat this process until the bottom layer is reached
- Advantages:
 - Query-independent, easy to parallelize, incremental update
 - O(K), where K is the number of grid cells at the lowest level
- Disadvantages:
 - All the cluster boundaries are either horizontal or vertical, and no diagonal boundary is detected

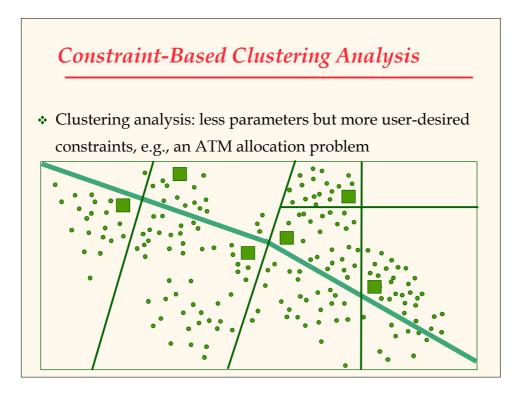


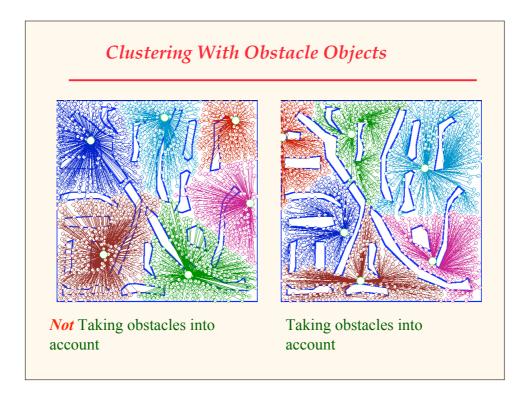






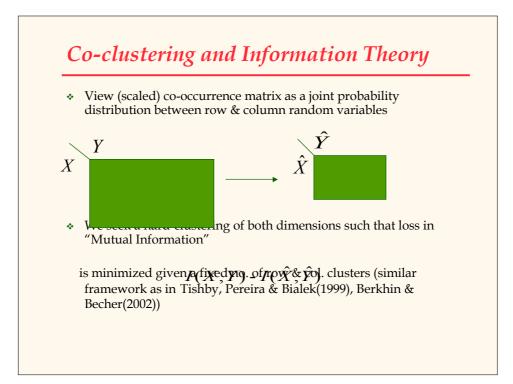






Co-clustering

- Given a multi-dimensional data matrix, coclustering refers to <u>simultaneous</u> clustering along multiple dimensions
- In a two-dimensional case it is simultaneous clustering of rows and columns
- Most traditional clustering algorithms cluster along a single dimension
- * Co-clustering is more robust to sparsity



Information Theory Concepts

* Entropy of a random variable X with probability distribution p(x):

$$H(p) = -\sum_{x} p(x) \log p(x)$$

* The Kullback-Leibler(KL) Divergence or "Relative Entropy" between two probability distributions p and q:

$$KL(p,q) = \sum p(x)\log(p(x)/q(x))$$

* Mutual Information between random variables X and Y:

$$I(X,Y) = \sum_{x} \sum_{y} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)}\right)$$

Jensen-Shannon Divergence

* Jensen-Shannon(JS) divergence between two probability distributions:

$$JS_{\Pi}(p_1, p_2) = \pi_1 KL(p_1, \pi_1 p_1 + \pi_2 p_2) + \pi_2 KL(p_2, \pi_1 p_1 + \pi_2 p_2)$$

= $H(\pi_1 p_1 + \pi_2 p_2) - \pi_1 H(p_1) - \pi_2 H(p_2)$

where

where $\pi_1, \pi_2 \ge 0, \pi_1 + \pi_2 = 1$ Shannon(JS) divergence between a finite number of probability distributions:

$$\begin{split} HS_{\Pi}(\{p_{1},...,p_{n}\}) &= \sum_{i} \pi_{i} KL(p_{i},\pi_{1}p_{1}+....+\pi_{n}p_{n}) \\ &= H\left(\sum_{i} \pi_{i}p_{i}\right) - \sum_{i} \pi_{i} H(p_{i}) \end{split}$$

Information-Theoretic Clustering:

Preserving mutual information

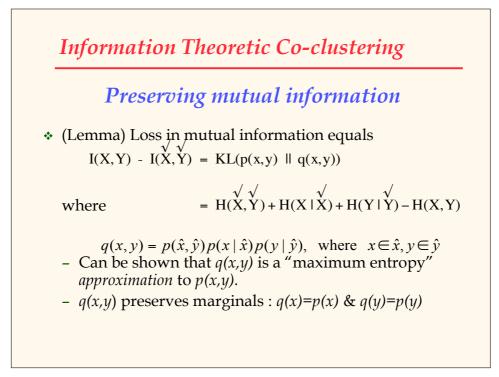
* (Lemma) The loss in mutual information equals:

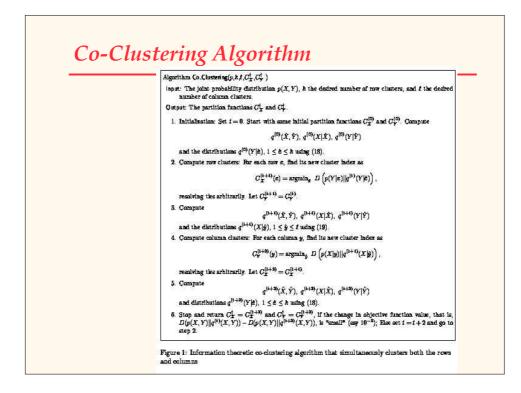
$$I(X,Y) - I(X,\hat{Y}) = \sum_{j=1}^{n} \pi(\hat{y}_j) JS_{\pi^*}(\{p(x \mid y_t) : y_t \in \hat{y}_j\})$$

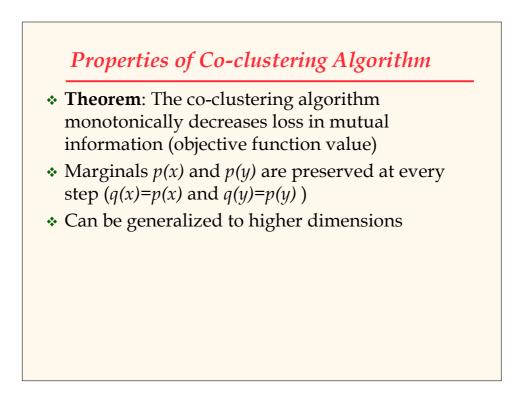
- Interpretation: Quality of each cluster is measured by the Jensen-Shannon Divergence between the individual distributions in the cluster.
- * Can rewrite the above as:

$$I(X,Y) - I(X,\hat{Y}) = \sum_{j=1}^{n} \sum_{y_i \in \hat{y}_j} \pi_t KL(p(x \mid y_t), p(x \mid \hat{y}_j))$$

* Goal: Find a clustering that minimizes the above loss





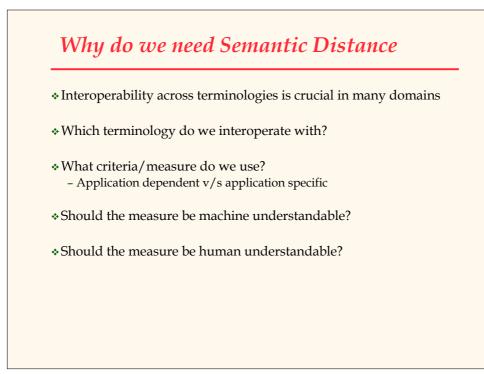


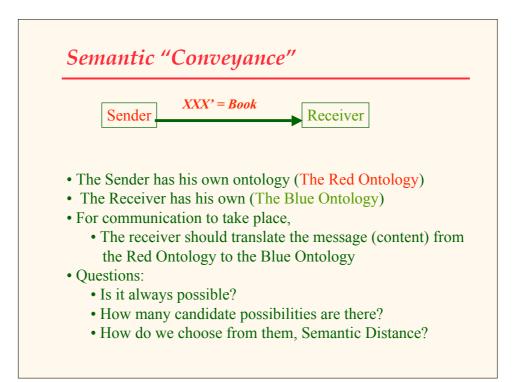
Semantic Distance

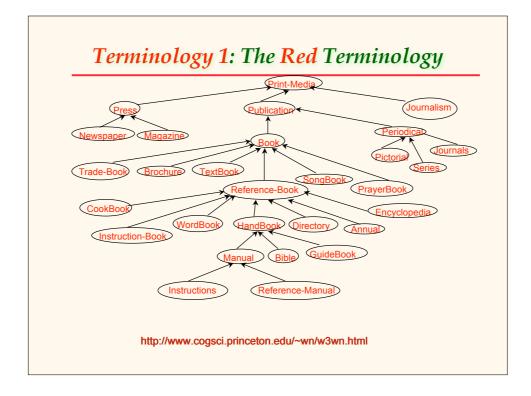
- Why Semantic Distance ?
 Some applications of Semantic Distance
- The Semantic "Conveyance" problem
 - Translations across multiple ontologies
 - Role of Semantic Distance
 - One approach of measuring Semantic Distance

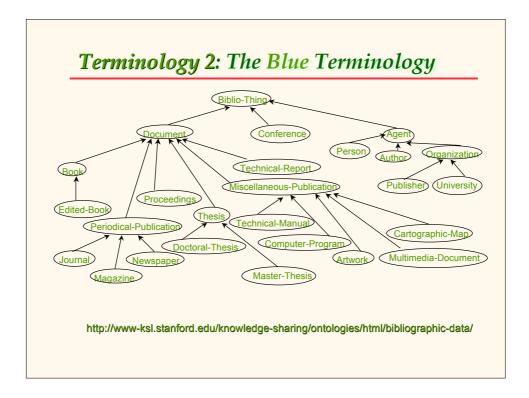
The Hows of Semantic Distance

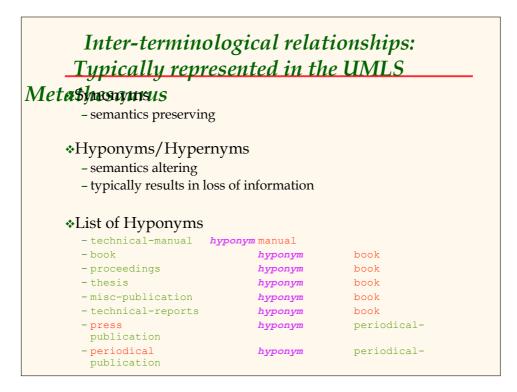
- Types of Semantic Distance measures

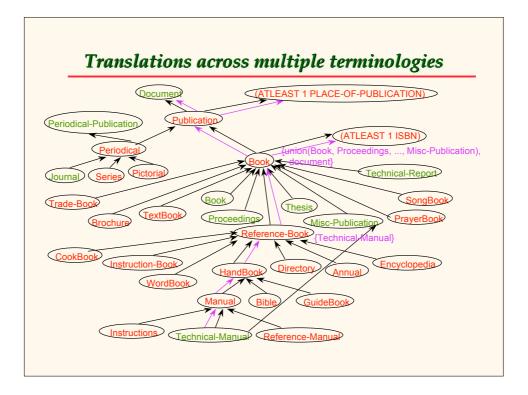


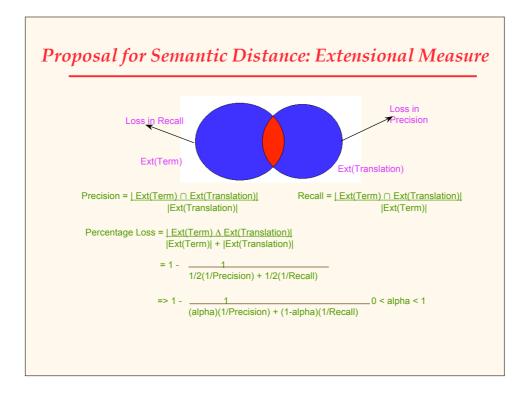


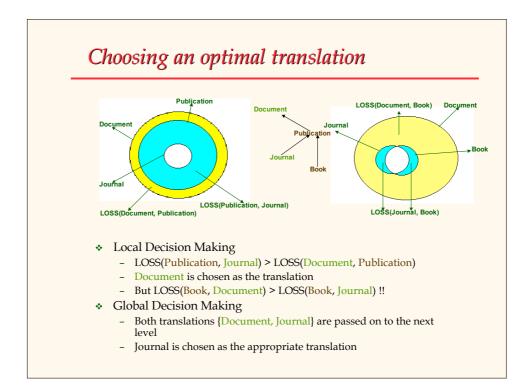


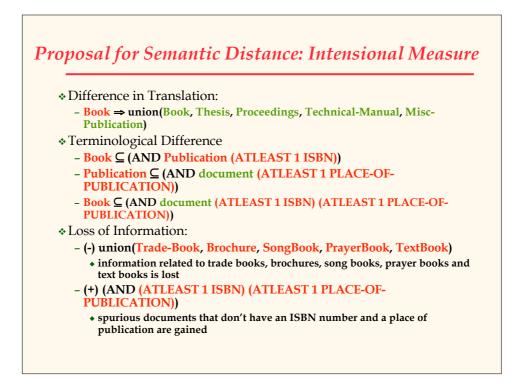












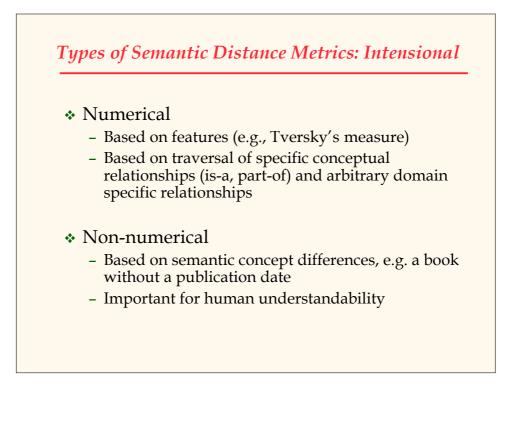
Measures for Semantic Distance: Pros and Cons

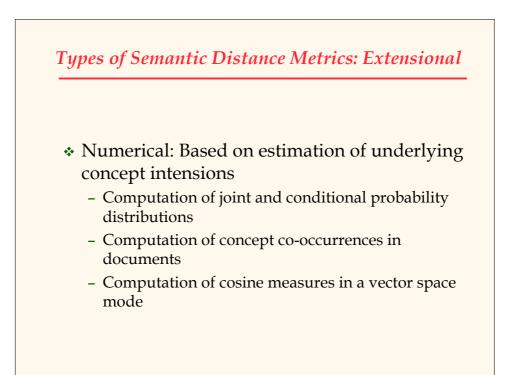
Intensional Measure:

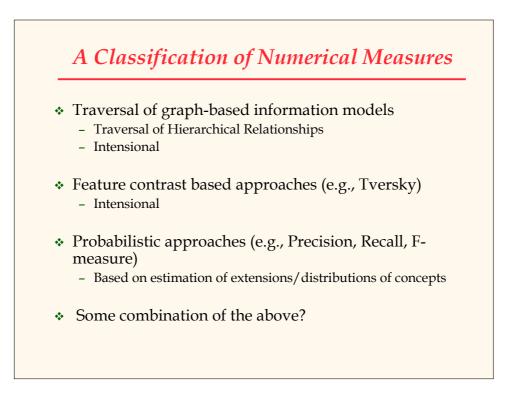
- May not make sense as it mixes two vocabularies,
 e.g., does Book Book make any sense ?
- The problem becomes worse if the two terminologies are in different languages
- Makes it hard for the system to differentiate between the various alternatives

*Extensional Measure:

- Based on Standard Information Retrieval Measures (F-measure)
- Can be tailored to reflect change in semantic distance for different applications
- However:
 - Probability distributions of various terms need to be estimated
 - ◆ An information loss interval doesn't make much sense to the user.







$$S(a, b) = \frac{|A \cap B|}{|A \cap B| + \alpha(a, b) |A - B| + (1 - \alpha(a, b)) |B|}$$

- A|
* S(a, b) is the similarity between two arbitrary objects, a,b
* A and B are feature sets of a, b respectively
* \alpha is a real number $0 \le \alpha \le 1$