Introduction to Machine Learning

Rafal Bogacz

Feedback on assignments

- Final mark: 50% coursework + 50% exam
- Marking components for individual parts
- Sample answers and codes
 - If you are NOT OK with showing your work, please let me know
- Jason will be available to discuss questions
 - Detailed time will be announced after making of each assignment
- Individual feedback will be provided for written part

Aims and objectives

Aim

- To be able to properly use machine learning tools in practical applications
- Objectives
 - To be able to choose an appropriate learning algorithm for a given problem
 - To use machine learning algorithms in solving classification problems
 - To understand theoretical limitations of machine learning

What does it mean to learn?

- Mitchell's definition:
 - A computer program solving task T learns from Experience E with respect to performance measure P,
 - if its performance in task T as measured by P improves with experience E

Content of the lectures

- Supervised: classification
 - Symbolic: focus on decision trees
 - Subsymbolic: focus on Bayesian
 - Overview of other ~1001 algorithms
- Overview of other learning tasks
- General issues
 - Why learning from examples is possible?
 - Comparing learning algorithms
- Internet applications: spam & recommend

Cher specialized units

- Symbolic classification
 - Learning from structured data
- Sybsymbolic classification
 - Pattern analysis and statistical learning
- Reinforcement learning
 Adaptation in autonomous systems
- Unsupervised learning
 - Signals patterns and Symbols
 - Pattern analysis and statistical learning

Why learning from examples is possible?

Lecture 2

Samp	le lear	ning p	orobler	n
Examp	oles			
Sky	Temper.	Rain	Wind	Fly Balloor
Sunny	Cold	None	Weak	Yes
Cloudy	Cold	None	Weak	Yes
Cloudy	Cold	Shower	Strong	No
Sunny	Hot	None	Weak	Yes
Are th	e following	days Ok	for ballo	oning?
Cloudy	Hot	Shower	Strong	
Cloudy	Hot	None	Weak	

• $\forall x \in X$: $h_2(x)=1 \implies h_1(x)=1$

1

Futility of bias-free learning

- The most specific hypothesis
 - classifies two positive examples as positive, and all other as negative => useless
- The most general hypothesis
 - classifies two negative examples as negative, and all other as positive => useless
- A learner that makes no assumptions about the identity of the target concept has no rational basis for classifying unseen instances

Decision trees Lectures 4-5

Information gain
Gain (examples, A) =
• expected reduction in entropy due to sorting on A

$$Gain(S, A) = Entropy(S) - \sum_{v \in Falues(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

• Where
• S_v – subset of examples with attribute A equal to v

Ballooning for beginners

Sky	Temper.	Rain	Wind	Fly Balloon
Sunny	Cold	None	Weak	Yes
Cloudy	Cold	None	Weak	Yes
Cloudy	Cold	Shower	Strong	No
Sunny	Hot	None	Weak	Yes
Sunny	Hot	None	Strong	No
Cloudy	Hot	None	Strong	No
Cloudy	Cold	Shower	Weak	No

- "If two theories explain the facts equally well, then the simpler theory is to be preferred"
- Rationale
 - There is fewer short hypotheses than long hypotheses
 A short hypothesis that fits data

is unlikely to be a coincidence

A long hypothesis that fits data

(1285-1349)

Formal treatment: Lecture 6.5

may be a coincidence

- Break ties by choosing condition with largest p
- Until accuracy criterion satisfied

Consider class Balloon=Yes

Condition	р	t
Sky=Sunny	2	3
Sky=Cloudy	1	4
Temper.=Cold	2	4
Temper.=Hot	1	3
Rain=None	3	5
Rain=Shower	0	2
Wind=Weak	3	4
Wind=Strong	0	3
Wind-Sciong	0	5

Discrete Bayesian classifiers

Lectures 6-7

- Bayes theorem
- Maximum likelihood classification
- "Brute force" Bayesian learning
- Naïve Bayes

Exa	mple		
Con	sider Dat	а	 We estimate:
Wind	Rain	Balloon	• $P(No) = 62\%$
Strong	Shower	No	• $P(\text{res}) = 38\%$ • $P(\langle \text{Weak}, \text{None} \rangle \text{No}) = 20\%$
Strong	Shower	No	 P(<weak,none> Yes)=100%</weak,none>
Strong	None	No	P(<weak,show.> No) = 20%</weak,show.>
Weak	None	Yes	•
Weak	Shower	No	
Weak	None	Yes	• $L(No) \sim 0.62 \times 0.2 = 0.12$
Weak	None	No	■ L(Yes) ~ 0.38 x 1= 0.38
Weak	None	Yes	 Answer: Yes

Problem with 'Brute force'

- It cannot generalize to unseen examples x^{new}, because it does not have estimates P(c_i|x^{new})
- It is useless
- Brute force does not have any bias
- So in order to make learning possible we have to introduce a bias

	nlo			
Exall	ipie			
Recal	l `advance	d balloon	ing' set:	
Sky	Temper.	Rain	Wind	Fly Balloor
Sunnv	Cold	None	Strong	Yes
		Chauran	Weak	Yes
Cloudy	Cold	Shower		103
Cloudy Cloudy	Cold	Shower	Strong	No

P(1 X) ^		P(1) P	(CI) I) P	י וח)׳) •	2(SII)1) P	(SUT)
=	=	0.5 x	0.5	х	0	х	0.5	Х	0.5 = 0
P(NIx)	v	0.5 x	0.5	х	0.5	х	1	х	1 = 0.125

attribute a_i

Bayesian belief networks

Lecture 8

Inference
During Bayesian classification we compute:
$c(x) = \arg\max_{c_i} P(a_1,,a_n \mid c_i) P(c_i) = \arg\max_{c_i} P(a_1,,a_n,c_i)$
• In general in Bayesian network with nodes Y_i :
$P(y_1,,y_n) = \prod_{i=1}^{n} P(y_i \mid Parents(Y_i))$
• Thus $P(a_1,,a_n,c) = \prod_{i=1}^{n} P(a_i Parents(A_i))P(c)$
 Example: Classify patient: W,V,¬H P(W,V,¬H,F) = P(W VF) P(V F) P(¬H F) P(F)

Comparing accuracy of classifiers

Example		
We did five-f	fold cross vali	dation
Can we tell t	hat learning a	algorithm A is better
than B on a	given dataset	based on:
Test set	Error of A	Error of B
Data 1	5%	6%
Data 2	10%	6%
Data 3	8%	4%
Data 4	20%	15%
Data 5	12%	11%
 How confide 	nt can we be	of our judgement? $_{_2}$

Example

- One week before the election in country C two parties A and B have exactly equal support of 50%
- What is the probability that opinion poll of 100 voters will show support for $B \leq 45\%$?
- If X=voting for B, then recall (from Lecture 3)
 E(X)=¹/₂, std(X)=¹/₂
- Let \overline{x} the average of 100 respondents
 - $E(\overline{x}) = , std(\overline{x}) =$

Comparin	g paired	data					
Consider the	results:						
 Test set 	Error of A	Error of B	Difference				
 Data 1 	5%	6%	-1%				
Data 2	10%	6%	4%				
Data 3	8%	4%	4%				
Data 4	20%	15%	5%				
Data 5	12%	11%	1%				
 Comparing A vs. B is equivalent to asking whether the difference between their accuracies has positive/negative mean 							

Correction for small sample

- The function on the previous slide will return close approximation of p only for large N
- For small N, a correction is required for incorrect estimate of S
- This correction is done by the t-test or Student's test

- No, because training sets overlap
- Weka uses corrected t-test (Nadeau & Bengio, 1999)

Types of t-test (2) Two tailed Most frequently used Described on previous slides One tailed Modification which gives p value two times lower than two-tailed Application: Two-tailed test was not significant But you still want to publish your paper ;-)

What is the best classifier?

Lecture 13

Conservation of generalization

- Quantifying inductive bias
- Predicting the error on testing set

- Vladimir Vapnik worked in Institute of Control
- Sciences, Moscow. Then moved to: AT&T Labs, NEC Labs, Princeton
- Then moved to: AT&T Labs, NEC Labs, Princeton University
- Now: Royal Holloway, London

