Machine Learning

Outline

- Introduction and Basic Notions
- Fundamental tasks
- Classification, Regression, Clustering, Reinforcement
- Representation
 - Symbolic vs. Subsymbolic
 - Propositional vs. Relational
- Ensemble Learning (Bagging, Boosting)
- Statistical Relational Learning
- Kernel Machines (NN, SVM)
- Clustering (Partitioning, hyerarchical)
- PAC Learning Model
- Evaluation (Overfitting, Error estimation, ROC analysis)
- Historical development
- Open problems and Current trends

- Category formation
- Learning from reasoning
- Learning from experience
- Learning by analogy
- Active learning

« Natural » Learning

"Information Processing" Model

- Models of Memory and Learning that exploits the Computer as a metaphore
- Learning = information processing and memorization

Machine Learning Precursor

Arthur Samuel developed a program that learned to play checkers well enough to beat skilled humans in the 1950s. This is the first notable success of machine learning.

Conceptual Learning

- Principle of « Human Comprehensibility »
- Michalski, Carbonell, Mitchell
 - Pittsburgh Workshop (1980, 1983, 1985, 1987)
 - Ann Harbor Workshop (1988)
- Neural networks
 - Rosenblatt (Perceptron, ~1940)
 - MacCullocch & Pitts (1943)
 - Minsky & Papert (Linear Discriminator, 1950)
 - NO in Computers and Thought (Feigembaum & Feldman, 1963)
 - McClelland & Rumelhart (Multi-layer perceptron, 1986)

Graph of historycal development --> at the end

Importance of Representation

- Data language
- Hypothesis language
- The languages delimit what can be expressed and what can be learned (representation power -> language bias)

Propositional Languages

• The languages determines the difficulty of learning (computational complexity)

What's in an attribute?

- Each instance is described by a fixed predefined set of features, its "attributes"
- But: number of attributes may vary in practice
 - Possible solution: "irrelevant value" flag
- Related problem: existence of an attribute may depend of value of another one
- Possible attribute types ("levels of measurement"):
 - Boolean, nominal, ordinal, continuous, hierarchical

Ordinal attributes

• Impose order on values

•

- Example: attribute "temperature" in weather data
- Values: "hot" > "mild" > "cool"
- Example rule: temperature < hot ⇒ play = yes
- Distinction between nominal and ordinal not always clear (e.g. attribute "color")

Continuous attributes

- Real valued attributes
- Example 1: attribute "temperature" expressed in degrees Fahrenheit
- Example 2: attribute "year"
- Example 3: attribute "length"
- Any algebraic operation makes sense

Rule's Coverage

- Rule "covers" a subset of examples
- Rules may overlap
- Set of rules may not cover whole example space

- R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
- R5: (Live in Water = sometimes) \rightarrow Amphibians

umily tr	ee repro	esented	as a tai
Name	Gender	Parent ₁	Parent ₂
Peter	Male	?	?
Peggy	Female	?	?
Steven	Male	Peter	Peggy
Graham	Male	Peter	Peggy
Pam	Female	Peter	Peggy
lan	Male	Grace	Ray
Pippa	Female	Grace	Ray
Brian	Male	Grace	Ray
Anna	Female	Pam	lan
Nikki	Female	Pam	lan

First	Second person	Sister of?	First	Second person	Sister of?
person			person		
Peter	Peggy	No	Steven	Pam	Yes
Peter	Steven	No	Graham	Pam	Yes
			lan	Pippa	Yes
Steven	Peter	No	Brian	Pippa	Yes
Steven	Graham	No	Anna	Nikki	Yes
Steven	Pam	Yes	Nikki	Anna	Yes
			All	the rest	No
lan	Pippa	Yes			
				1	
Anna	Nikki	Yes			
				/	
Nikki	Anna	100	Closed-	world assur	nption

A full representation in one table

	First person			Second person				Sister of?
Name	Gender	Parent1	Parent2	Name	Gender	Parent1	Parent2	
Steven	Male	Peter	Peggy	Pam	Female	Peter	Peggy	Yes
Graham	Male	Peter	Peggy	Pam	Female	Peter	Peggy	Yes
lan	Male	Grace	Ray	Pippa	Female	Grace	Ray	Yes
Brian	Male	Grace	Ray	Pippa	Female	Grace	Ray	Yes
Anna	Female	Pam	lan	Nikki	Female	Pam	lan	Yes
Nikki	Female	Pam	lan	Anna	Female	Pam	lan	Yes
	All the rest							No

If second person's gender = female and first person's parent = second person's parent then sister-of = yes

Relational Representation: Hypotheses

- Hypothesis Language Bias
- Subsets of First Order Logic
 - Horn clauses
 - Description logic

• A ground term is a term with no variables.

FOL Syntax

- An atom/literal is smallest expression to which a truth value can be assigned.
 - Predicate(Term₁, ..., Term_n): Teacher(John, Deb), <=(Sqrt(2),Sqrt(7))</pre>
 - $\boldsymbol{\cdot}$ maps one or more objects to a truth value
 - \cdot represents a user defined *truth* relation

Concepts and Predicates

- P -> set of basic predicates of a logical language L
- Ω -> set of individuals of the universe
- According to classical logic, formulas in L can be partitioned into two subsets
 open formulas, with some occurrence of free variables ==> concepts [Frege]

• *closed* ones (sentences), with no free variables. A concept does not have a truth value associated with it; rather, it partitions Ω into the concept *extension* and its complement. The concept extension consists of the set of individuals (or tuples of individuals) which satisfy the concept definition.

Let $\phi(x_1,\,x_2,\,...\,,\,x_n)$ be a concept over the free variables $x_1,\,x_2,\,...\,,\,x_n;$ the extension of f is defined as follows:

 $EXT(\phi) = \{ < a_1, a_2, \dots, a_n > | \phi(a_1, a_2, \dots, a_n) \text{ is true} \} \subseteq \Omega^n$

Predicates that are true of a given n-tuple $<\!\!a_1,\,a_2,\ldots,\,a_n\!>\,\in\Omega^n$ are said to belong to the "intension" of that n-tuple:

 $INT(\langle a_1, a_2, ..., a_n \rangle) = \{ p \in P \mid p(a_1, a_2, ..., a_n) \text{ is true} \}$

Intension vs Extension

Intension and extension are dual properties of concept hierarchies. A certain confusion between these two aspects has influenced some of the current definitions of the *more-specific-than*.

Visiting the network bottom-up, a set inclusion relation holds between concepts <u>extensions</u>; visiting the network top-down, a set inclusion relation holds for concepts <u>intensions</u>. Any node in the hierarchy inherits *instances* from its descendants and *properties* from its ancestors.

More-specific-than relation should acknowledge that specificity (or generality) is an essentially *extensional* property and, hence, it *only pertains to concepts*, i.e., open formulas that have an associated extension. Closed formulas (i.e., sentences) are *statements about the generality of the associated concepts*. A concept and a sentence are not comparable with respect to generality.

More-General-Than relation : Intensional Definition

- θ -subsumption [Plotkin, 1970] $\gamma_1 \theta \subseteq \gamma_2 \implies \gamma_1 \text{ is more general than } \gamma_2 \implies \gamma_2 | < \gamma_1$ $\theta = \{x_1/a_1, ..., x_n/a_n\}$
- Implication $\gamma_2 \rightarrow \gamma_1 \implies \gamma_1 \text{ is more general than } \gamma_2 \implies \gamma_2 |<\gamma_1$

Hystory of FOL Machine Learning

Multiple relations

This is structured data

		car_properties						
Car		Car	Length	Shape	Axes	Roof		
c11		c11	short	rectangle	2	none		
c12		c12	long	rectangle	3	none		
c13		c13	short	rectangle	2	peaked		
c14		c14	long	rectangle	2	none		
c21		c21	short	rectangle	2	flat		
	Car c11 c12 c13 c14 c21 	Car c11 c12 c13 c14 c21 	Car Car c11 c11 c12 c12 c13 c13 c14 c21	Car Car Length c11 c11 short c12 c12 long c13 c13 short c14 c14 long c21 short	Car Car Length Shape c11 c11 short rectangle c12 long rectangle c13 c14 long rectangle c21 c14 long rectangle c21	Car Car Length Shape Axes c11 c11 short rectangle 2 c12 long rectangle 3 c13 c13 short rectangle 2 c14 long rectangle 2 c21 short rectangle 2 c14 long rectangle 2 c21 short rectangle 2	Car Car Length Shape Axes Roof c11 c11 short rectangle 2 none c12 c12 long rectangle 3 none c13 c13 short rectangle 2 peaked c14 long rectangle 2 none c21 short rectangle 2 flat	

Other Approaches

- SMART+ [Giordana et al.]
 - Hybrid strategy SBL + EBL
- G-Net [Giordana et al.]
 - Genetic Algorithms : Theory of Niches and Species to learn multimodal concepts
 - Cromosome = FOL formulas with internal disjunction
 - Distributed evolution and covering test

FOIL

- FOIL learns rules that predict when the target is true; sequential covering learns both rules that are true and false.
- FOIL performs a hill-climbing search; sequential covering performs a beam search.
- FOIL rules are more expressive than Horn Clauses, because the precondition can have negated literals.

FOIL

FOIL's method is very similar to sequential covering.

FOIL(target-predicate, predicates, examples)

- 1. Pos \leftarrow Those examples where target-predicate is true
- 2. Neg \leftarrow Those examples where target-predicate is false
- 3. Learned-Rules \leftarrow {}

4. While Pos do

Learn a new rule NewRule

- 5. Learned-Rules \leftarrow Learned-Rules + NewRule
- 6. Pos \leftarrow Pos {members of Pos covered by NewRule}
- 7. Return Learned-Rules

FOIL

Foil does a general to specific search on each rule by starting with a NULL precondition and adding more literals (hill-climbing).

Learning New Rules

NewRule

- 1. NewRule ← If {} then target-predicate
- 2. CoveredNeg \leftarrow Neg
- 3. While CoveredNeg do

 - b. BestLiteral ← argmax Foil_Gain L in candidate-literals (L,NewRule)
 - c. Add BestLiteral to preconditions of NewRule
- d. CoveredNeg ← subset of CoveredNeg satisfied by NewRule *End While*

Generating Specializations

Assume our current rule is as follows:

 $P(x_1, x_2, \ldots, x_k) \leftarrow L_1, \ldots, L_n$

Where each Li is a literal and $P(x_1,x_2,\ldots,x_k)$ is the head or postcondition. FOIL considers new literals L_{n+1} to add to the rule such as:

 Predicates: Q(v₁,...,v_r) where Q is a predicate and v_i is an existing or new variable (at least one v_i must be already present).

• Functions: Equal(x_j, x_k) where x_j and x_k are present in the rule. • Negated literals.

Example

We wish to learn the target predicate GrandDaughter(x,y)

Our predicates are Father(x,y) and Female(x) Our constants are Victor, Sharon, Bob, and Tom.

We start with the most general rule:

 $GrandDaughter(x,y) \leftarrow$

Example

Possible literals we could add:

Equal(x,y), Female(x), Female(y), Father(x,y) ... and their negations

Assume we find the best choice is

 $GrandDaughter(x,y) \leftarrow Father(y,z)$

Example

We add the best candidate literal and continue adding literals until we generate a rule like the following:

GrandDaughter(x,y) \leftarrow Father(y,z) \land Father(z,x) \land Female(x)

At this point we remove all positive examples covered by the rule and begin the search for a new rule.

Choosing the Best Literal

Consider the target predicate:

 $GrandDaughter(x,y) \leftarrow$

Consider all bindings. Example {x/Bob, y/Sharon}

Choosing the Best Literal

Now compare rule R before adding a literal and after adding a literal.

Foil-Gain(L,R) = t [$\log_2 (p_1 / p_1 + n_1) - \log_2 (p_0 / p_0 + n_0)]$

t: positive bindings of rule R still covered after adding literal L p_0 : positive bindings of rule R n_0 : negative bindings of rule R p_1 : positive bindings of rule R' n_1 : negative bindings of rule R'

Inductive Logic Programming (ILP)

Muggleton,

De Raedt

Morik

Sebag

Saitta et al.

Esposito et al.

.....

Complexity of Learning

- Classical Complexity Theory -> Worst-case
- PAC Framework -> Polynomial learnability
- Complexity distribution -> "Typical" complexity
 -> Phase Transitions

