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Machine Learning

Outline
• Introduction and Basic Notions
• Fundamental tasks

– Classification, Regression, Clustering, Reinforcement
• Representation

– Symbolic vs. Subsymbolic
– Propositional vs. Relational

• Ensemble Learning (Bagging, Boosting)
• Statistical Relational Learning
• Kernel Machines (NN, SVM)
• Clustering (Partitioning, hyerarchical)
• PAC Learning Model
• Evaluation (Overfitting, Error estimation, ROC analysis)
• Historical development
• Open problems and Current trends

What is Learning ?

• LEARNING IN LIVING ORGANISMS DENOTES
A SET OF POSSIBLY COMPLEX, DIFFERENT
ACTIVITIES, INVOLVING A VARIETY OF
COGNITIVE SKILLS

•  LEARNING IS FUNDAMENTAL FOR SURVIVAL

• LEARNING IS THE BASIS OF INTELLIGENCE

Machine Learning: A Multidisciplinary Field

MachineMachine
LearningLearning

Probability &Probability &
StatisticsStatistics

ComputationalComputational
ComplexityComplexity

TheoryTheory InformationInformation
TheoryTheory

PhilosophyPhilosophy

NeurosciencesNeurosciences

ArtificialArtificial
IntelligenceIntelligence



2

The DIKW Pyramid DIKW

Data

Information

Knowledge

Wisdom

“ …
  Where is the wisdom we have

lost in knowledge?
  Where is the knowledge we

have lost in information? ”
          ✓ ✓ ✓
   (T. S. Eliot, The Rock, 1934)

Learning Facts, Names, Numbers

apple

telephone
number

Blaise Pascal
is a philosopherEarth is

a sphere

Stimulus/Response Motor Skills

Walking

Riding a bicycle

Writing on a keybord
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Talking, New Language

Learning to speak Learning a new language

Ita
lian

French

English

Recognition : Faces

Classification: Text Documents Grouping



4

Higher Cognitive Functions

• Category formation
• Learning from reasoning
• Learning from experience
• Learning by analogy
• Active learning

« Natural » Learning

“Information Processing” Model

• Models of  Memory and Learning that exploits the
Computer as a metaphore

• Learning = information processing and
memorization

Model of Human Learning

 Long 
Term 

Memory

Short 
Term 

Memory

Learning

Recall

Control process

Percezione

Large capacity
1-3 sec

Sensory 
memory

Limited capacity
(5-9) unities

5-20 sec

Illimited capacity
Illimited time

Perception   
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STM -> LTM  (Human)

ShortShort
TermTerm

memorymemory

Forgetting
(Interference)

Forgetting
(Spontaneous decay)

Consolidation/Poten-
tiation

Long Long 
TermTerm

MemoryMemory
TransferredTransferred
knowledgeknowledge

Ri-elaboratedRi-elaborated
knowledgeknowledge

RielaborationRielaboration
IntegrationIntegration

STM -> LTM (Machine)

ShortShort
TermTerm

memorymemory

Forgetting
(Interference)

Consolidation/Poten-
tiation

LongLong
TermTerm

MemoryMemory

Linear transferLinear transfer

Human Learning : Neural Networks

Origins
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Machine Learning Precursor

Arthur Samuel developed a
program that learned to play
checkers well enough to beat
skilled humans in the 1950s.
This is the first notable
success of machine learning.

Machine Learning : Origins

• Conceptual Learning 
– Principle of « Human Comprehensibility »
– Michalski, Carbonell, Mitchell

• Pittsburgh Workshop (1980, 1983, 1985, 1987)
• Ann Harbor Workshop (1988)

• Neural networks
– Rosenblatt (Perceptron, ~1940)
– MacCullocch & Pitts (1943)
– Minsky & Papert (Linear Discriminator, 1950)
– NO in Computers and Thought (Feigembaum & Feldman, 1963)
– McClelland & Rumelhart (Multi-layer perceptron, 1986)

Graph of historycal development --> at the end

Basic Notions

Concept

• Concept
– Extensional notion
– Intensional notion

• Classic (matching necessary and sufficient conditions)
– Aristotle

• Heuristic (matching sufficient conditions)
– Wittgestein

• Prototypical (distance)
– Rosch

• Procedural notion (simulation)
– Barsalou

ω
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Induction (Why can we learn?)

• Continuity hypothesis
– The future is similar to the past

Set of instances

Observed property P
on subset

Induction

P is valid
everywhere

                Induction is falsity preserving (Hume)

Generalization (How do we learn?)

Later on --->

Choice (Occam’s Razor)

• Inductive hypotheses explaining observations may be
infinite in number

• Selection criteria

« Entia non sunt multiplicanda 
praeter necessitate » (Wilhelm von Occam)

Among alternative hypotheses, 
choose the simplest one, ceteris paribus

Context

Letter ?    B

Number ?    13
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Basic Tasks

Classification

Class BClass B

ClassClass  AA

x

x

x

x

x

x

x
x

x
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x

x

x

o
o
o

o
o

o
o

Classification

AlgorithmEx
 (Sufficient) Description
  for each class

We want to label portions of the instance space with the name
of one (or more ) of the given classes

Different criteria:Different criteria:
  Memory k-NN, CBR

  Generalization Decision trees, Classification rules, NN, SVM, …

  Probability Discriminant analysis, Bayes rule, …

  “Causality” Bayesiane nets, …

Discriminant Analysis

Funzione discriminanteFunzione discriminante

Income

Debt

x

x
x

x
x
x

x x

x
x
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+
+
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+
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+

o
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+

o

+

o

x

y

LinearLinear
Loan :   y - a x - b < 0

         Non Linear         Non Linear
Class A :    y - a x2 - b > 0

No loanNo loan

LoanLoan

Classe AClasse A

Classe BClasse B
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Bayesian Classifier

Probabilistic discrimination functionProbabilistic discrimination function
Bayesian approach
Maximum Likelihood
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Case-Based Approach

k-Nearest Neighboursk-Nearest Neighbours
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No prestitoNo prestito

PrestitoPrestitox

Regression
To find a functional relation functional relation between variables occurring ina database

y = f(xy = f(x11, ... , x, ... , xk-1k-1))

Usually f has a (parametrized) known form and learning means to
estimate the parameters θ = (θ1, ... , θK)

x = Income

y = Debt

x

x
x

x
x
x

X

x
x

x
x
x

x

x
x

x
x

x

x

x

x

y i

xi

f (xi)

Minimize Η(θ) w.r.t. θ 

Linear regression:
   y = a x + b

Clustering

Distance
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Summary / Characterization
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xx x
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xx
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xx
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DD1                                     DD2   2                                                                                                               DD33

Whe haved the point been
grouped together?

What do they have in common?
CC1

CC22

  CC33

Association Rule Discovery

AssociationsAssociations among facts, properties, or variables values

72% of those that buy salad also buy seasoning

Typical problemTypical problem
Market Basket Analysis

---->           {Bread, Peaches �}

            1/7/99

Bread

Peaches

Eggs

Pasta

...

           2/7/99

Rice

Bread

Meat

Peaches

...

 basket                    basket

Exception detection
Detection of deviant values from “normal”

(Exceptions, Errors, …)

x
x x x

xx
x

x

x
x

xx
x

x

x

xx
x

x x x
x x

x
x xx

x
x x

x
x

x x
x

xx
xxx x

x
x
x x x

x

xx
x

x xx
xx x

x
x x

xx x
xx
x

N
n

n << N

x

x x x

x

xx x
x x

x
x xxx x

x
x

x x
x

xx
xx x

x x x

Age

I.Q. Test score

❏

Temporal Series / Sequences
✿✿ PatternPattern (episode) discovery
✿✿ Trends Trends andand seasonality  seasonality analysis

Time
Ski jacket sells

5

15

10

20

0
Gen Feb Mar Apr Mag Giu Lug Ag Set Ott Nov Dic

Months
Gen Feb Mar Apr MagGiu Lug Ag Set Ott Nov Dic
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Representation Languages

Importance of Representation

• Data language
• Hypothesis language
• The languages delimit what can be expressed and

what can be learned (representation power ->
language bias)

• The languages determines the difficulty of
learning (computational complexity)

Type of Languages

• Symbolic
– Propositional logic
– FOL logic

• Subsymbolic
– Neural networks
– Support Vector Machines

Propositional Languages
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Data language
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Hypothesis Language

Terminology from AQ
(Michalski)
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Types of Languages
• Classification rules (disjunction of conjunctions)
• Decision trees
• Decision lists
• Neural nets
• Kernels
• Associations
• Bayes discriminat function
• Bayes networks
• ………………….

<Attribute, Value> Vector

• X -->  <(A1, v1), (A2, v2), …, (An, vn)>

X -->  <(Shape, square), (Length, 5 cm), …,
          (Color, red)>
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Generalization Partial Order

h --> COVER(h)

COVER(h)

Set of instances

Hypothesis h1

Hypothesis h2

h2 is more
general than h1

h2 >| h1   iff  COVER(h2) ⊇ COVER(h1)

Impossible to test

Generalization (Galois Lattice)

(Sunny,Warm,?)(Sunny,?,Strong)(?,Warm,Strong)(?,Cold, Strong)(Rainy, ?, Strong)(Rainy,Cold,?)

(?, ?, ?)

(Sunny,Warm, Strong) (Rainy, Cold, Strong)

(∅,∅,∅,∅,∅)

(Sunny,?,?)         (?,Warm,?)             (?,?, Strong)             (?, Cold, ?)        (Rainy, ?, ?)
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Intension vs Extension

Specific                                                            Generic

Albert lives in Paris                     Albert lives in France

Particular                                                         General

Paris’ inhabitants                     France’s inhabitants

Europe

France
Paris

FOL Representation of Data and
Hypotheses

An instance is composed by parts, which satisfy
some relations among each other
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- Description logic
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FOL Syntax

• A term denotes an object in the world.

– Constant: BobSmith, 2, Madison, Green, …
– Variable: x, y, a, b, c, …
– Function(Term1, …, Termn):

Sqrt(9), Distance(Madison,Milwaukee)
• maps one or more objects to another single object
• can refer to an unnamed object: e.g. LeftLegOf(John)
• represents a user defined functional relation
• cannot be used with logical connectives

• A ground term is a term with no variables.

FOL Syntax

• An atom/literal is smallest expression
to which a truth value can be assigned.

– Predicate(Term1, …, Termn):
Teacher(John, Deb),  <=(Sqrt(2),Sqrt(7))

• maps one or more objects to a truth value
• represents a user defined truth relation

FOL Syntax

• A sentence represents a fact in the world
that is assigned a truth value.

– atom
– complex sentence using connectives
– complex sentence using quantified variables

FOL Semantics

• A TRUTH value is assigne to each atom
• Boolean values => {1, 0} or {T, F}
• Truth values are propagated in complex formulas

using the truth tables for connectives

D EXT(student(x))

D = Insieme degli abitanti di Novara 

D = Set of Lyon’s Inhabitants
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FOL Connectives

• Conjunction   AND   (α ∧ β)
• Disjunction  OR   (α ∨ β)
• Exclusive disjunction  XOR  (α ∨ β)
• Negation  NOT  (¬ α)
• Implication (α → β)

1

0

1

1

 →

001111

011001

1

1

NOT

11010

00000

XORORANDyx

Extension of Connectives

EXT(p(x))

EXT(q(x))

EXT(p(x) ! q(x))

D

 

EXT(p(x) ! q(x))

p(x)

q(x)

D

 

EXT(p(x)) EXT(q(x))

D

EXT(p(x) ∨ q(x))

FOL Quantifiers

• Universal                ∀x P(x)
All elements id the domain D satisfy predicate P

• Existential              ∃x P(x)
In the domain P there exists at least one element
that satisfies predicate P

D = EXT(P(x))

. P(x)
D

Horn Clauses

• Horn Clause = Clause with one head and a body

       C = {¬p1(x, y, …), …, ¬pn(x, y, …), h(x,y,…)} =

      = ¬p1(x, y, …) ∨… ∨ ¬pn(x, y, …) ∨ h(x,y,…) =

          =  h(x,y,…) ← p1(x, y, …) ∧ … ∧ pn(x, y, …)
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Concepts and Predicates
•  P -> set of basic predicates of a logical language L
•  Ω -> set of individuals of the universe
• According to classical logic, formulas in L can be partitioned into two subsets

•  open  formulas, with some occurrence of free variables  ==> concepts [Frege]
•  closed  ones (sentences), with no free variables.

A concept does not have a truth value associated with it; rather, it partitions Ω
into the concept extension and its complement. The concept extension consists of
the set of individuals (or tuples of individuals) which satisfy the concept
definition.

Let ϕ(x1, x2, ... , xn) be a concept over the free variables x1, x2, ... , xn; the
extension of f is defined as follows:

                           EXT(ϕ) = {< a1, a2, ... , an> | ϕ(a1, a2, ... , an) is true} ⊆ Ωn

Predicates that are true of a given n-tuple <a1, a2, ... , an> ∈ Ωn are said to belong
to the “intension” of that n-tuple:
               INT(< a1, a2, ... , an>) = {p ∈ P | p(a1, a2, ... , an) is true}  

Intension vs Extension
Intension and extension are dual properties of concept hierarchies. A certain
confusion between these two aspects has influenced some of the current
definitions of the more-specific-than.

animal(x)

mammal(x)                   biped(x)

human(x)

 

Visiting the network bottom-up, a set
inclusion relation holds between concepts
extensions; visiting the network top-down, a
set inclusion relation holds for concepts
intensions. Any node in the hierarchy inherits
instances from its descendants and properties
from its ancestors.

More-specific-than relation should acknowledge that specificity (or generality) is an
essentially extensional property and, hence, it only pertains to concepts, i.e., open
formulas that have an associated extension. Closed formulas (i.e., sentences) are
statements about the generality of the associated concepts. A concept and a
sentence are not comparable with respect to generality.

Concepts and Sentences      (1/2)
• Concepts become sentences by binding their variables. In this paper we consider three

binding operators:
(a) Grounding

By binding a variable xi (1 ≤ i ≤ n) to a constant ai, the concept
ϕ(x1, x2, ... , xn) becomes a new concept, ψ, with one free variable less
==> ψ(x1,...,xi-1,xi+1,...,xn) = ϕ(x1,...,xi-1,ai,xi+1,...,xn)

(b)Existential quantification
By existentially quantifying a variable xi (1 ≤ i ≤ n), the concept
ϕ(x1,x2,...,xn) becomes a new concept, ψ, with one free variable less

            ==> ψ(x1,...,xi-1,xi+1,...,xn) = ∃xi ϕ(x1,x2,...,xn)
(c)  Universal quantification

By universally quantifying a variable xi (1 ≤ i ≤ n), the concept
 ϕ(x1,x2,...,xn) becomes a new concept, ψ, with one free variable less

                ==> ψ(x1,...,xi-1,xi+1,...,xn) = ∀xi ϕ(x1,x2,...,xn)

Ω
. a

EXT(square(x))
contains at least a

Concepts and Sentences      (2/2)
• Difference between concepts (open formulas)

and sentences (closed formulas)
• Concept square(x)


 σ1 = square(a), with a ∈ Ω


        


        σ2 = ∃x [square(x)]


        σ3 = ∀x [square(x)]

Ω
. EXT(square(x)) 

not empty

Ω
EXT(square(x)) coincides 
with Ω 

square(x)
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More-General-Than relation : Extensional Definition

Given two concepts ϕ(x1,x2,...,xn) and ψ(x1,x2,...,xn), and a
universe of discourse Ω, the concept ϕ(x1, x2, ..., xn) will
be said more general than the concept ψ(x1, x2, ..., xn)
(denoted by ψ |< ϕ) iff:
                   EXT(ψ) ⊆ EXT(ϕ)

ψ ϕ

Generality may not be
tested extensionally in
practice

More-General-Than relation : Intensional Definition

• θ-subsumption [Plotkin, 1970]
   γ1θ ⊆ γ2     ==>  γ1 is more general than γ2  ==>    γ2 |< γ1

                                          θ =    {x1/a1, …, xn/an}

• Implication
   γ2 → γ1    ==>    γ1 is more general than γ2  ==>  γ2 |< γ1

Generalization Rules   [Michalski]

1. Turning a constant to a variable
 square(a) |< square(x)

2. Dropping conditions
square(x) ∧ small(x) |< small(x)

3. Introducing disjunction
square(x) |< square(x) ∨ rectangle(x)

4. Extending/Closing intervals
length(x, [0, 0.5]) |< length(x, [0, 1])
length (x, [0, 0.5] ∨ [0.7, 1]) |< length(x, [0, 1])

5. Climbing a generalization hierarchy
 square(x) ∧ small(x) |< polygon (x) ∧ small(x)

Hystory of
FOL Machine Learning



22

Winston’s ARCH

Winston made a program that could learn the concept of
an arch

Arch examples

Arch Arch

Near miss

Near
miss

How does machine recognize an
arch? What concept should it learn
in order to recognize an arch?

How do you teach machine to
recognize an arch?

Concept of Arch

c1

a1 b1 Arch

Part

Part

Part

brick

brick

brick

supports

supports

Representation Language - Input data: graph

brick(a1) ∧ brick(b1) ∧ brick(c1) ∧ supports(a1, c1) ∧ supports(b1, c1)

Pyramid arch

c2

a2 b2
Arch

Part

Part

Part

brick

brick

pyramid

supports

supports

brick(a2) ∧ brick(b2) ∧ pyramid(c2) ∧ supports(a2, c2) ∧ supports(b2, c2)
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Background Knowledge

Polygon

brick pyramid

Is-aIs-a

Generalization

Arch

Part

Part

Part

brick

brick

polygon

supports

supports

Generalizing a network by replacing node or
links names with a more general concept

brick(a) ∧ brick(b) ∧ polygon(c) ∧ supports(a, c) ∧ supports(b, c)

Description of a Near-Miss

c

a b Arch

Part

Part

Part

brick

brick

polygon

supports

supports

touch touch

brick(a) ∧ brick(b) ∧ polygon(c) ∧ supports(a, c) ∧ supports(b, c) ∧

∧ touch(a,b) ∧ touch(b,a)

Specialization: Excluding the near miss

Arch

Part

Part

Part

brick

polygon

supports

supports

must-not-touch must-not touch

Operations: specializing a network by adding links

Concept

brick

brick(a) ∧ brick(b) ∧ polygon(c) ∧ supports(a, c) ∧ supports(b, c) ∧

∧ must-not-touch(a,b) ∧ must-not-touch(b,a)
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Michalski’s INDUCE

• Language VL2  -> Extension of VL1

• More-general-than  --> Generalization rules
• Transformation of examples into propositional description -> Use

AQ -> Back to FOL
• Exponential complexity

Multiple relations

This is structured data

 … …

 c21 t2

 c14 t1

 c13 t1

 c12 t1

 c11 t1

CarTrain

………………

…flat2rectangleshortc21

…none2rectanglelongc14

…peaked2rectangleshortc13

…none3rectanglelongc12

…none2rectangleshortc11

…RoofAxesShapeLengthCar

has_car car_properties

Vere’ Toth

• More-general-than   -->  θ-subsumption
• Counterfactuals -> Nested exceptions

Pos Neg

r s1

r  ∧ ¬ (s1 ∧ ¬ s2) →  ω

s2

exception

exception of exception

Other Approaches

• SMART+ [Giordana et al.]

– Hybrid strategy SBL + EBL

• G-Net  [Giordana et al.]

– Genetic Algorithms : Theory of Niches and Species to
learn multimodal concepts

– Cromosome = FOL formulas with internal disjunction
– Distributed evolution and covering test
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FOIL

Quinlan, 1990
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Inductive Logic Programming (ILP)

Muggleton,

De Raedt

Morik

Sebag

Saitta et al.

Esposito et al.

…….
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Complexity of Learning and Phase
Transitions

• Classical Complexity Theory -> Worst-case

• PAC Framework -> Polynomial learnability

• Complexity distribution -> “Typical” complexity
-> Phase Transitions

Complexity of Learning

Phase Transitions

Ice Cream E(T)

TS(T)

TE(T)        Complexity
S(T)         Probability of Solution
  T            Some Order Parameter

Matching

Matching

Main source of complexity in relational learningMain source of complexity in relational learning

Matching problem  Matching problem  Match(Match(ϕϕ, U), U)

Given a FOL formula Given a FOL formula ϕϕ and a universe U,  and a universe U, 
does there exists a model of does there exists a model of ϕϕ in U? in U?
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Phase Transition

P
sol

x

0.5

1

C Ensemble of problemsEnsemble of problems
PPsolsol  = Probability that a randomly generated
          problem is solvable
CC  =  Complexity to find one solution or to
          prove that none exists

When the size of the problem increases:
•   The transition in Psol becomes sharper 
•   The complexity peak becomes higher

Shift from Worst-case complexity to Typical complexity
Much more detailed view of complexity issues than

classical complexity theory

Stochastic problem 
generation

Exploration of the (m,L) plane
Ensemble of artificial matching problems Match(ϕ,U)
generated according to a specified stochastic model

                               All ϕ have the same number n of variables
                                        (n = 4, 6, 10, 12, 14)

                               Every relation in any universe U contains
                                 the same number N of tuples

                                     (N = 30, 50, 100, 130)

m = Number of predicates in ϕ
L = Number of constants in U

m

L

50

10

3 50

(m,L)

1.0

0.5

0.0

Phase Transition in Plane (m, L)

Relation Size: N = 100       Number of variables: n = 10

L = Number of constant in the
       universe
m = Number of (Binary) literals in
       a formula

100 problems
for each pair <m,L>

YES-region NO-region

PT-region

Matching Complexity

Relation Size:              N = 100
Number of variables:  n = 10
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Relational Learning: Hypothesis Generation

R = Number of generated clauses ϕ
S = Cardinality of the learning set E
R* S = Number of matching problems

The matching problem problem
ensembleensemble is generated by A
itself according to its
exploration strategy

Learning Set 
E = (Ep,En)

AA ϕ 
Matching

All solutions are around the PT

Why does this happens?

m

L

NO

YES PT

Blind Spot

451 Relational Problems

Learners
FOIL,
Smart+,
G-Net
Still
Progol


