Machine Learning

Outline

+ Introduction and Basic Notions
Fundamental tasks
- Classification, Regression, Clustering, Reinforcement
+  Representation
- Symbolic vs. Subsymbolic
- Propositional vs. Relational
Ensemble Learning (Bagging, Boosting)
Statistical Relational Learning
Kernel Machines (NN, SVM)
+  Clustering (Partitioning, hyerarchical)
+ PAC Learning Model
Evaluation (Overfitting, Error estimation, ROC analysis)
Historical development
+  Open problems and Current trends

What is Learning ?

LEARNING IN LIVING ORGANISMS DENOTES
A SET OF POSSIBLY COMPLEX, DIFFERENT
ACTIVITIES, INVOLVING A VARIETY OF
COGNITIVE SKILLS

LEARNING IS FUNDAMENTAL FOR SURVIVAL

+ LEARNING IS THE BASIS OF INTELLIGENCE

Machine Learning: A Multidisciplinary Field

Artificial

Intelligence

Probability &
Statistics

/ Neurosciences

Computational
Complexity
Theory

Philosophy
Information

Theory
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Recognition : Faces

Talking, New Language
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Classification: Text Documents
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Higher Cognitive Functions

+ Category formation

+ Learning from reasoning

- Learning from experience
* Learning by analogy

+ Active learning

« Natural » Learning

"Information Processing” Model

Model of Human Learning

*+ Models of Memory and Learning that exploits the

Computer as a metaphore

¢ Learning = information processing and
memorization

Control process

Learning Long

ﬂ . Term
Perception
i Memory
Recall
—.

T 7

—
Limited capacity
(5-9) unities
5-20 sec

Illimited capacity
Illimited time

Large capacity
1-3 sec




STM ->LTM (Human)

Consolidation/Poten-
tiation

Forgetting

Forgetting (Spontaneous decay)
(Interference)

STM -> LTM (Machine)

Consolidation/Poten-
tiation

Forgetting
(Interference)

Human Learning : Neural Networks

* Neural Networks are
made up of many
identical processors

* Processing is
powerful because
connections are rich
in information

Origins




‘ Machine Learning Precursor

Arthur Samuel developed a
program that learned to play
checkers well enough to beat
skilled humans in the 1950s.
This is the first notable
success of machine learning.

Machine Learning : Origins

Conceptual Learning
- Principle of « Human Comprehensibility »
- Michalski, Carbonell, Mitchell
+ Pittsburgh Workshop (1980, 1983, 1985, 1987)
+ Ann Harbor Workshop (1988)
Neural networks
- Rosenblatt (Perceptron, ~1940)
- MacCullocch & Pitts (1943)
- Minsky & Papert (Linear Discriminator, 1950)
- NO in Computers and Thought (Feigembaum & Feldman, 1963)
- McClelland & Rumelhart (Multi-layer perceptron, 1986)

Graph of historycal development --> at the end I

Basic Notions

Concept

+ Concept
- Extensional notion
- Intensional notion
+ Classic (matching necessary and sufficient conditions)
- Aristotle
+ Heuristic (matching sufficient conditions)
- Wittgestein
+ Prototypical (distance)
- Rosch
+ Procedural notion (simulation)
- Barsalou




Induction (Why can we learn?)

+ Continuity hypothesis
- The future is similar to the past

Set of instances

@@

Observed property P P is valid

on subset everywhere

Induction is falsity preserving (Hume)

Generalization (How do we learn?)

Later on --->

Choice (Occam's Razor)

+ Inductive hypotheses explaining observations may be
infinite in number

Selection criteria

« Entia non sunt multiplicanda
praeter necessitate » (Wilhelm von Occam)

a

Among alternative hypotheses,
choose the simplest one, ceteris paribus

Context

Letter ? B
-
Number ? 13




Basic Tasks

Classification

Class B

Classification

(Sufficient) Description

g | Algorithm——

for each class

We want to label portions of the instance space with the name
of one (or more ) of the given classes

Different criteria:

Memory k-NN, CBR

Generalization Decision trees, Classification rules, NN, SVM, ...
Probability Discriminant analysis, Bayes rule, ...
“Causality” Bayesiane nets, ...

Discriminant Analysis

Funzione discriminante
Debt

No loan

Income

Linear Non Linear
Loan: y-ax-b<0 ClassA: y-ax?-b>0




Bayesian Classifier

Probabilistic discrimination function
Bayesian approach
Maximum Likelihood

Pr{A | %) = Pr{X | A} P(A)

Pr{x | A} P(A) + Pr{x | B} P(B)

PrB I X} = Pr{X | B} P(B)

Pr{x | A} P(A) + Pr{x | B} P(B)

Pr{A | X} =Pr{B | &

Pr{A | X} P(A) =Pr{B | X} P(B)

Case-Based Approach

Debt
k-Nearest Neighbours

No prestito °
x | o
o

x x
xx/\o Xo/o

x x\ o o
x o/qo Prestito
x o
o o

Regression
To find a functional relation between variables occurring ina database
y = f(Xq, oo s X)

Usually f has a (parametrized) known form and learning means to

x

estimate the parameters 6 = (01, ... , 6y)
y = Debt
Vil - - - - - o X X Minimize H(0) w.r.t. 6
X
X
£ (x: - —% - - - . .
o A« Linear regression:
x x X x -
x xo y=ax+b
X X F
X |
‘

i
! x = Income

Income
Clustering
Distance
‘n Density
Shape
(“Gestalt”)




Summary / Characterization

Association Rule Discovery

Associations among facts, properties, or variables values

Whe haved the point been
XXy % 4
C, *xx );(Xxx§ X grouped together?
x Xx xx Xxx 3
XX x X X What do they have in common?
X X X XXX X X X
XX X UX X X
);X)Z(xx *x Xy X xxxxxxxx
x XX X X xxxx X x X g C3
X X
X X Kxx x XX
XXy x *x xX
Xx X, X X
X
X
Xx X [
X x X
D, D, D,

72% of those that buy salad also buy seasoning

Typical problem

o 27199 Market Basket Analysis
Bread Rice
Peach Bread
eaches rea > {Bread, Peaches}
Eggs Meat
Pasta Peaches
basket basket

Exception detection

|

Detection of deviant values from “norma
(Exceptions, Errors, ...)

1.Q. Test score

X
XX
XXX
X

X X X

X
Xx_ Xx

X xx Xxx

n<<N

Temporal Series / Sequences

< Pattern (episode) discovery
€ Trends and seasonality analysis

Ski jacket sells
20| |7
15
10

5

Time

]

=

Gen Feb Mar Apr MagGiu Lug Ag Set Ot NovDic Gen Feb Mar Apr MagGiu Lug Ag Set Ott Nov Dic

Months
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Representation Languages

Importance of Representation

+ Data language
* Hypothesis language
* The languages delimit what can be expressed and

what can be learned (representation power ->
language bias)

* The languages determines the difficulty of

learning (computational complexity)

Type of Languages

+ Symbolic

- Propositional logic

- FOL logic

+ Subsymbolic

- Neural networks

- Support Vector Machines

Propositional Languages

11



Terminology

+  Components of the input:
- Concepts: kinds of things that can be learned

*+ Aim: intelligible and operational concept
description

- Instances: the individual, independent examples
of a concept

- Attributes: measuring aspects of an instance

g

Data language

What's in an attribute?

Each instance is described by a fixed predefined set of
features, its "attributes”

But: number of attributes may vary in practice
- Possible solution: “irrelevant value” flag

Related problem: existence of an attribute may depend of
value of another one

Possible attribute types (“levels of measurement”):

- Boolean, nominal, ordinal, continuous, hierarchical

Nominal attributes

Values are distinct symbols
- Values themselves serve only as labels or names
Example: attribute “outlook” from weather data
- Values: "sunny” “overcast”, and "rainy”
No relation is implied among nominal values (no ordering or
distance measure)

Only equality tests can be performed

Ordinal attributes

Impose order on values

Example:
attribute “temperature” in weather data

- Values: "hot" > "mild" > “cool”

Example rule:

temperature < hot = play = yes
Distinction between nominal and ordinal not always clear
(e.g. attribute "color")

12



Continuous attributes

Real valued attributes

Example 1: attribute "temperature” expressed in degrees
Fahrenheit

Example 2: attribute "year”

Example 3: attribute “length”

Any algebraic operation makes sense

Hierarchical attributes

Why specify attribute types?

* Why Machine Learning algorithms need to know
about attribute type?

* Inorder fo be able to make right comparisons and
learn correct concepts, e.g.
- Outlook > “sunny” does not make sense, while
- Temperature > “cool” or
- Humidity > 70 does

* Additional uses of attribute type: check for valid
values, deal with missing, etc.

Hypothesis Language

Selector
Complex

and

(Temperature < 5) and
(Weather =

Terminology from AQ Internal
(Michalski) disjunction

Cover - set of rules
Star - set of alternative complexes

13



Rule's Coverage
Types of Languages

* Rule “"covers"” a subset of examples
Classification rules (disjunction of conjunctions) v fex P

Decision trees * Rules may overlap
Decision lists
ecision 1 + Set of rules may not cover whole example space
Neural nets
Kernels

Associations
Bayes discriminat function
Bayes networks

Example
<Attribute, Value> Vector S |G B oo R
human viarm yes no no Imammals
python cold no no no reptiles
salmon cold no no yes fishes
vihale viarm yes no yes Imammals
frog cold no no i
komodo cold no no no reptiles
bat viarm yes yes no
[pigeon [warm N0 yes no birds |
cat warm yes no no [mammals
leopard shark [cold yes no yes rishes
. - flurtie cold no no reptiles ]
X > <(A11 VI)' (Az, VZ)I e (Anl VH)> penguin warm no no |sometimes [oirds
warm yes no
eel cold no [no yes ffishes
cold no no
X --> «(Shape, square), (Length, 5 cm), ... L
platypus viarm no no no Imammals
owi viarm no yes no birds
(Color, red)> oo fuam e e e e
eagle warm fno yes [no [birds

R1: (Give Birth = no) a (Can Fly = yes) — Birds

R2: (Give Birth = no) a (Live in Water = yes) — Fishes
R3: (Give Birth = yes) a (Blood Type = warm) — Mammals
R4: (Give Birth = no) A (Can Fly = no) — Reptiles

R5: (Live in Water = sometimes) — Amphibians




Covering Test

+ Arule rcovers an instance x if the attributes of
the instance satisfy the condition of the rule
R1: (Give Birth = no) A (Can Fly = yes) — Birds
R2: (Give Birth = no) a (Live in Water = yes) — Fishes
R3: (Give Birth = yes) a (Blood Type = warm) — Mammals
R4: (Give Birth = no) a (Can Fly = no) — Reptiles
R5: (Live in Water = sometimes) — Amphibians h--> COVER(h)

Generalization Partial Order

Name Blood Type Give Birth Can Fly Live in Water: Class
hawk warm no yes no ?
grizzly bear warm yes no no ?

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

Covering Relation Generalization (Galois Lattice)
(2,2,7)
+ Generalization operations induce a partial
ordering on the concept space, called the /
covering relation -> extensional property
(Sunny,?,?) (?2,Warm,?) (2,2, Strong) (2, Cold, ?) (Rainy, ?, ?)
* Partial order = reflexive, antisymmetric and
transitive
. . Impossible to test
* Galois's Lattice topology /
h2 >| hl iff COVER(hZ) ) COVER(hl) (Sunny,Warm,?)(Sunny,?,Strong)(?,Warm,Strong)(?,Cold, Strong)(Rainy, ?, Strong)(Rainy,Cold,?)
Set of instances
h, is more S W
general than h, .
| Hypo'rhesis hl (Sunny,Warm, Strong) (Rainy, Cold, Strong)
Hypothesis h, (2.9.28,9)




Intension vs Extension

Albert lives in Paris Albert lives in France
Specific Generic
Paris’ inhabitants France’s inhabitants
Particular General
Europe

FOL Representation of Data and

Relational Representation: Data

An instance is composed by parts, which satisfy
some relations among each other

Red(a) A Sphere(a) A Square(b) A
A Blue(b) A On(a,b)

Hypotheses
A family tree
Peter _  Peggy Grace _ Ray
M F F M
| |
Steven  Graham Pam _ lan Pippa Brian
M M F M F M
|
Anna NikKi
F F

16



Family tree represented as a table

Name Gender Parent,; Parent,
Peter Male ? ?
Peggy Female ? ?
Steven Male Peter Peggy
Graham Male Peter Peggy
Pam Female Peter Peggy
lan Male Grace Ray
Pippa Female Grace Ray
Brian Male Grace Ray
Anna Female Pam lan
Nikki Female Pam lan

The “sister-of"” relation

First Second person Sister of? First Second person Sister of?
person person
Peter Peggy No Steven Pam Yes
Peter Steven No Graham Pam Yes
lan Pippa Yes
Steven Peter No Brian Pippa Yes
Steven Graham No Anna Nikki Yes
Steven Pam Yes Nikki Anna Yes
All the rest No
lan Pippa Yes
Anna Nikki Yes
Nk Ana s Closed-world assumption

A full representation in one table

First person Second person Sister
of?
Name Gender Parent1 Parent2 Name Gender Parent1 Parent2
Steven Male Peter Peggy Pam Female Peter Peggy Yes
Graham Male Peter Pegay Pam Female Peter Pegay Yes
lan Male Grace Ray Pippa Female Grace Ray Yes
Brian Male Grace Ray Pippa Female Grace Ray Yes
Anna Female Pam lan Nikid Female Pam lan Yes
Nikii Female Pam lan Anna Female Pam lan Yes
All the rest No

If second person’s gender = female

and first person’s parent = second person’s parent

then sister-of = yes

Relational Representation: Hypotheses

* Hypothesis Language Bias
+ Subsets of First Order Logic

- Horn clauses

- Description logic

17



FOL Syntax

A term denotes an object in the world.

— Constant: BobSmith, 2, Madison, Green, ...
— Variable: x,y,a,b,c, ..
- Function(Term,, ..., Term,):
Sqrt(9), Distance (Madison,Milwaukee)
* maps onhe or more objects to another single object
+ can refer to an unhamed object: e.g. LeftLegOf (John)
* represents a user defined functional relation
+ cannot be used with logical connectives

A ground ferm is a term with no variables.

FOL Syntax

+ Anatom/literal is smallest expression
to which a truth value can be assigned.

— Predicate(Term,, ..., Term,):

Teacher (John, Deb), <=(Sqrt(2),Sqrt(7))

* maps one or more objects to a truth value
* represents a user defined truth relation

FOL Syntax

+ A sentence represents a fact in the world
that is assigned a truth value.

- atom
- complex sentence using connectives
- complex sentence using quantified variables

FOL Semantics

+ A TRUTH value is assigne to each atom
+ Boolean values => {1, 0} or {T, F}

* Truth values are propagated in complex formulas
using the truth tables for connectives

D = Set of Lyon's Inhabitants

18



FOL Connectives

+ Conjunction AND (a A B)
+ Disjunction OR (a v B)
+ Exclusive disjunction XOR (o V B)

- Negation NOT (- «)

Extension of Connectives

EXT(p(x) »q(x))

EXT(p(x)

y "/
L .
EXT(q(x))

I EXT(p(x) V q(x)

“ 5 [
° EXT(p(x) - q(x))

+ Implication (o — ) y AND [OR [XOR [NOT | _
0 0 0 0 0 1 1
o [t |o [t |1 |1 |1
1 0 0 1 1 0 0
1 [t |1t [t |o |o |1
FOL Quantifiers
+ Universal Vx P(x)
All elements id the domain D te P
+ Existential 3x P(x)

In the domain P there exists at least one element
that satisfies predicate P

Horn Clauses

* Horn Clause = Clause with one head and a body
C=pilX Y, o Pa(X, Y, ) h(xy. ) =
= -py(X, Y, ) Ve v Epa(x,y, L) v hixy,.) =

= h(xy,..) < px. ¥, .) A o apu(Xx,y, ..)

19



Concepts and Predicates

« P -> set of basic predicates of a logical language L
¢ Q ->set of individuals of the universe
 According to classical logic, formulas in L can be partitioned into two subsets

* open formulas, with some occurrence of free variables ==> concepts [Frege]

* closed ones (sentences), with no free variables.
A concept does not have a truth value associated with it; rather, it partitions €
into the concept extension and its complement. The concept extension consists of
the set of individuals (or tuples of individuals) which satisfy the concept
definition.
Let @(x,, X,, ... , X,) be a concept over the free variables x,, x,, ... , x; the
extension of f is defined as follows:

EXT(p) = {<a,, a,, ..., 3> ¢(a,, a,, ..., a,) is true} C Q"

n’

Predicates that are true of a given n-tuple <a,, a,, ..., a,> € Q" are said to belong
to the “intension” of that n-tuple:
INT(<a,,a,,..,a>)={pEPIpa,a,..,a)is true}

Intension vs Extension

Intension and extension are dual properties of concept hierarchies. A certain
confusion between these two aspects has influenced some of the current
definitions of the more-specific-than.

Visiting the network bottom-up, a set
inclusion relation holds between concepts
extensions; visiting the network top-down, a
set inclusion relation holds for concepts
intensions. Any node in the hierarchy inherits human(x)
instances from its descendants and properties

from its ancestors.

animal(x)

mammal(x) biped(x)

More-specific-than relation should acknowledge that specificity (or generality) is an
essentially extensional property and, hence, it only pertains to concepts, i.e., open
formulas that have an associated extension. Closed formulas (i.e., sentences) are
statements about the generality of the associated concepts. A concept and a
sentence are not comparable with respect to generality.

Concepts and Sentences  (1/2)

¢ Concepts become sentences by binding their variables. In this paper we consider three
binding operators:

(a) Grounding
By binding a variable x; (1 < i <n) to a constant a;, the concept
@(X,, X,, ... , X,) becomes a new concept, y, with one free variable less
== YP(X e X5 Xy paeeenXy) = QX et X 58X 50X )

(b) Existential quantification
By existentially quantifying a variable x; (1 < i < n), the concept
@(X|,X,,....X,) becomes a new concept, y, with one free variable less

== P(X XXy oeensXy) = 3% QX Xg,000X)

(c) Universal quantification
By universally quantifying a variable x; (1 < i < n), the concept
@(X;,X,.....X,) becomes a new concept, |, with one free variable less

== P(X e X Xy X)) = VX Q(XX5,000X )

Concepts and Sentences  (2/2)

« Difference between concepts (open formulas)
and sentences (closed formulas)

¢ Concept square(x)

o, = square(a), witha € Q EXT(square(x))
contains at least a

0, = 3x [square(x)]

EXT(square(x))
not empty

0, = Vx [square(x)]

EXT(square(x)) coincides
with Q

20



More-General-Than relation : Extensional Definition

EXT(y) & EXT(¢)

Generality may not be
tested extensionally in
practice

More-General-Than relation : Intensional Definition

* 0-subsumption [Plotkin, 1970]
v,0 cy, ==> vy, is more general thany, ==> v,I<7y,
0= {x/a,....,x/a,}

e Implication
Y, =Y, ==> v, is more general thany, ==> v, I|<vy,

Generalization Rules [Michalski]

Turning a constant to a variable

square(a) |< square(x)
Dropping conditions

square(x) A small(x) |< small(x)
Introducing disjunction

square(x) |< square(x) v rectangle(x)
Extending/Closing intervals

length(x, [0, 0.5]) |< length(x, [0, 1])

length (x, [0, 0.5] v [0.7, 1]) |« length(x, [O, 11)
Climbing a generalization hierarchy

square(x) A small(x) [< polygon (x) A small(x)

Hystory of
FOL Machine Learning

21



Winston's ARCH

Winston made a program that could learn the concept of
an arch

Arch examples

Arch Arch
Near
miss

How does machine recognize an

arch? What concept should it learn
in order to recognize an arch?
l:| How do you teach machine to

recognize an arch?

Near miss

Concept of Arch

CPart > briek | Suppors

Representation Language - Input data: graph

brick(a,) A brick(b,) a brick(c,) A supports(a,, c;) A supports(b,, c,)

Pyramid arch

o .%

brick(a,) A brick(b,) A pyramid(c,) A supports(a,, ¢,) A supports(b,, c,)

22



Background Knowledge

Polygon

brick pyramid

Generalization

Cart > brick | upports
Part > brick | &uppors
CPartf potygon ||

Generalizing a network by replacing node or
links names with a more general concept

brick(a) a brick(b) A polygon(c) A supports(a, c) A supports(b, c)

Description of a Near-Miss

br1ck 7

HH Arch
i

polygon -1

brick(a) a brick(b) A polygon(c) A supports(a, c) A supports(b, c) A
A touch(a,b) A touch(b,a)

Specialization: Excluding the near miss

Concept bI‘le 7
@"
bmk i
polygon

Operations: specializing a network by adding links

brick(a) a brick(b) A polygon(c) A supports(a, c) A supports(b, c) A

A must-not-touch(a,b) A must-not-touch(b,a)

23



Michalski's INDUCE

Language VL, -> Extension of VL,
More-general-than --> Generalization rules

Transformation of examples into propositional description -> Use
AQ -> Back to FOL

Multiple relations

This is structured data

1. TRAINS GOING EAST 2 TRAINS GOING WEST

has_car car_properties
Train Car Car |Llength | Shape Axes | Roof
t1 cll cll  [short rectangle |2 none
t1 cl2 c12 |long rectangle |3 none
t1 cl3 c13  [short rectangle |2 peaked
t1 cl4 cl4  |long rectangle |2 none
t2 c21 c21 |short rectangle |2 flat

i » LaHooo G,
[ o o b Y
Lo —ar M4
‘ o/ HEET o A
e e 0 i
Vere' Toth

* More-general-than --> 6-subsumption
+ Counterfactuals -> Nested exceptions

Neg raa(s;a7s,)— o

exception

exception of exception

Other Approaches

+ SMART+ [Giordana et al.]
- Hybrid strategy SBL + EBL
+ G-Net [Giordana et al.]

- Genetic Algorithms : Theory of Niches and Species to
learn multimodal concepts

- Cromosome = FOL formulas with internal disjunction

- Distributed evolution and covering test

24



FOIL

Quinlan, 1990

FOIL

“ FOIL learns rules that predict when the target is true;

sequential covering learns both rules that are true and false.

+«» FOIL performs a hill-climbing search; sequential covering
performs a beam search.

¢+ FOIL rules are more expressive than Horn Clauses,
because the precondition can have negated literals.

FOIL

FOIL’s method is very similar to sequential covering.

FOIL (target-predicate, predicates, examples)
Pos € Those examples where target-predicate is true
Neg € Those examples where target-predicate is false
Learned-Rules € {}
While Pos do

Learn a new rule NewRule
Learned-Rules € Learned-Rules + NewRule
Pos € Pos — {members of Pos covered by NewRule}
Return Learned-Rules

LW =

b

N

FOIL

«“ Foil does a general to specific search on each rule by
starting with a NULL precondition and adding more
literals (hill-climbing).

25



Learning New Rules

NewRule

1. NewRule € If {} then target-predicate
2. CoveredNeg € Neg

3. While CoveredNeg do

a. candidate-literals € new literals for NewRule
b. BestLiteral € argmax Foil Gain L in
candidate-literals (L.NewRule)
c. Add BestLiteral to preconditions of NewRule
d. CoveredNeg € subset of CoveredNeg satisfied by NewRule
End While

Generating Specializations
Assume our current rule is as follows:
P(X;, Xy, . X)) €Ly, . Ly
Where each Li is a literal and P(x,, X,, ..., X) is the head or

postcondition. FOIL considers new literals L _, to add to the
rule such as:

n+1

Predicates: Q(v,,...,v,) where Q is a predicate and v, is an existing
or new variable (at least one v, must be already present).
Functions: Equal(x;,X,) where X; and x, are present in the rule.
Negated literals.

Example

We wish to learn the target predicate GrandDaughter(x,y)

Our predicates are Father(x,y) and Female(x)
Our constants are Victor, Sharon, Bob, and Tom.

We start with the most general rule:

GrandDaughter(x,y) €

Example

Possible literals we could add:
Equal(x,y), Female(x), Female(y), Father(x.y) ... and their negations
Assume we find the best choice is

GrandDaughter(x,y) € Father(y,z)

26



Example

We add the best candidate literal and continue adding literals until
we generate a rule like the following:

GrandDaughter(x,y) € Father(y,z) a Father(z,x) n Female(x)

At this point we remove all positive examples covered by the
rule and begin the search for a new rule.

Choosing the Best Literal

Consider the target predicate:
GrandDaughter(x.y) €

Consider all bindings. Example {x/Bob, y/Sharon}

Choosing the Best Literal

Now compare rule R before adding a literal and after adding
a literal.

Foil-Gain(L,R) =t [ log, (p; / p; + ;) - log, (0 / Po+ 1) ]
t: positive bindings of rule R still covered after adding literal L

Po: positive bindings of rule R n,: negative bindings of rule R
p;: positive bindings of rule R’ n,: negative bindings of rule R’

Inductive Logic Programming (ILP)

Muggleton,
De Raedt
Morik
Sebag
Saitta et al.

Esposito et al.

27



Complexity of Learning and Phase
Transitions

Complexity of Learning

Classical Complexity Theory -> Worst-case
PAC Framework -> Polynomial learnability

Complexity distribution -> "Typical” complexity
->Phase Transitions

Phase Transitions

Ice Cream E(T)

S(T) T

E(T) —» Complexity
S(T) —» Probability of Solution
T — Some Order Parameter

Matching

Matching problem Match(gp, U)

Given a FOL formula ¢ and a universe U,
does there exists a model of ¢ in U?

Main source of complexity in relational learning

28



Phase Transition

Ensemble of problems

P_, = Probability that a randomly generated
problem is solvable
C = Complexity to find one solution or to

prove that none exists

sol

When the size of the problem increases: generation

e The transition in P, becomes sharper
e The complexity peak becomes higher

Shift from Worst-case complexity to Typical complexity
Much more detailed view of complexity issues than
classical complexity theory

Exploration of the (m,L) plane

Ensemble of artificial matching problems Match(y,U)
generated according to a specified stochastic model

sl All ¢ have the same number n of variables
(m,L) (n=4,6,10,12,14)

L Every relation in any universe U contains
the same number N of tuples

ol (N = 30, 50, 100, 130)

»> _ . .
3 m 50 m = Number of predicates in ¢

L = Number of constants in U

Phase Transition in Plane (m, L)

100 problems L = Number of constant in the
universe

m = Number of (Binary) literals in

a formula

for each pair <m,L>
Psol

YES-region NO-region

PT-region

Relation Size: N = 100 Number of variables: n = 10

Matching Complexity

168088

So9e

Relation Size: N=100
Number of variables: n =10
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Relational Learning: Hypothesis Generation

> A L@ @ The matching problem
) ensemble is generated by A
C/ itself according to its
T exploration strategy

Learning Set
E=(E,E)

R = Number of generated clauses ¢
S = Cardinality of the learning set E
R* S = Number of matching problems

All solutions are around the PT

Why does this happens?

1000

451 Relational Problems

Learners
FOIL,
Smart+,
G-Net

Still
Progol
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