

Recap of Constrained Optimization

Suppose we want to: minimize f(x) subject to g(x) = 0
A necessary condition for x₀ to be a solution:

$$\begin{cases} \frac{\partial}{\partial \mathbf{x}} (f(\mathbf{x}) + \alpha g(\mathbf{x})) \Big|_{\mathbf{x} = \mathbf{x}_0} = \mathbf{0} \\ g(\mathbf{x}) = \mathbf{0} \end{cases}$$

- a: the Lagrange multiplier
- For multiple constraints $g_i(\mathbf{x}) = 0$, i=1, ..., m, we need a Lagrange multiplier a_i for each of the constraints

$$\begin{cases} \frac{\partial}{\partial \mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^{n} \alpha_i g_i(\mathbf{x}) \right) \Big|_{\mathbf{x} = \mathbf{x}_0} \\ g_i(\mathbf{x}) = 0 \quad \text{for } i = 1, \dots, m \end{cases}$$

Soft Margin Hyperplane

The Mercer Condition

- Is there a mapping $\Phi(x)$ for any symmetric function K(x,z)? No
- The SVM dual formulation requires calculation $K(x_i, x_j)$ for each pair of training instances. The array $G_{ij} = K(x_i, x_j)$ x_i is called the Gram matrix
- There is a feature space $\Phi(x)$ when the Kernel is such that *G* is always semi-positive definite (Mercer condition)

Why SVM Work?

- The feature space is often very high dimensional. Why don't we have the curse of dimensionality?
- A classifier in a high-dimensional space has many parameters and is hard to estimate
- Vapnik argues that the fundamental problem is not the number of parameters to be estimated. Rather, the problem is about the flexibility of a classifier
- Typically, a classifier with many parameters is very flexible, but there are also exceptions
 - Let $x_i=10^i$ where i ranges from 1 to n. The classifier $y = sign(sin(\alpha x))$ can classify all x_i correctly for all possible combination of class labels on x_i
 - This 1-parameter classifier is very flexible

