Support Vector Machines

[With notes from Law, Tang, Aliferis, Tsamardinos, Tan]
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Classifier Margin
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f(x,w,b) = sign(w x + b)

Define the

of a linear
classifier as the
width that the
boundary could
be increased by
before hitting a
datapoint.
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Maximizing the margin is good according
to intuition and PAC theory

Implies that only support vectors are
important; other training examples are

Empirically it works very very well.
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Support Vector Machines
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Setting Up the Optimization Problem

A

Var,

The width of the
margin is:
2|K|

[

So, the problem is:
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Setting Up the Optimization Problem
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There is a scale and
unit for data so that
k=1. Then problem
becomes:
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st.(w-x+b) =1, Vx of class 1
(w-x+b)=-1, Vx of class 2

Finding the Decision Boundary

=Let {x;, ..., x,} be our datasetand let y; 1 {1,-1} be
the class label of x;

= The decision boundary should classify all points
correctly by, (wlx; +b) > 1, Vi

= The decision boundary can be found by solving the
following constrained optimization problem

1
Minimize 5||w||2
subject to y;(wlix; +b) > 1 Vi

= This is a constrained optimization problem. Solving it
requires some new tools

= Feel free to ignore the following several slides; what is
important is the constrained optimization problem above




Recap of Constrained Optimization

= Suppose we want to: minimize f(x) subject to g(x) =0
= A necessary condition for x,, to be a solution:

{afi((f@o + ag()

9(x) =0
= a: the Lagrange multiplier

= For multiple constraints g,(x) = 0, i=1, ..., m, we need a
Lagrange multiplier a; for each of the constraints

=0

X=X

=0

{ai (f(X) + X aigi(x))
X=Xg

gi(x) =0 fori=1,...,m

Recap of Constrained Optimization

= The case for inequality constraint g;(x) < 0 is similar,
except that the Lagrange multiplier a; should be positive

= If X, is a solution to the constrained optimization
problem

mxin f(x) subjectto g;(x)<0 fori=1,....m
= There must exist a;3 0 for i=1, ..., m such that x, satisfy
{&(f(x) + 3 i (%)) =0
X=jxQ

gi(x) <0 fori=1,...,m

= The function /& + Zl_:aigi(x) is also known as the
Lagrangrian; we want to set its gradient to 0




Back to the Original Problem

1
Minimize 5||va2
subject to 1—y;(wlx;4b) <0 fori=1,...,n

= The Lagrangian is

L= %WTW + > o (1 — vy (wlx; + b))
=1
= Note that ||w||2 = ww
= Setting the gradient of £ w.r.t. w and b to zero, we

have n n
w4+ > ai(-y)xi =0 = W= oyX

n
> ay; =0
i=1

The Dual Problem

= If we substitute w = > awxi to £, we have

=1
L=3 Doawix; Yo agyixi+ Y i [ 1=y ajyix;x;+b)
i=1 j=1 i=1 j=1
1 n n T n n n T n
> DD oy X D i — Y oy ) agyXiXg — b Y aqy;
' i=1 =1 j=1 i=1

1 n n T n
=5 DL D gy Xt )

= Note that ; oy =0

= This is a function of a; only




The Dual Problem

= The new objective function is in terms of a, only

= It is known as the dual problem: if we know w, we
know all a; if we know all a;, we know w

= The original problem is known as the primal problem

= The objective function of the dual problem needs to be
maximized!

= The dual problem is therefore:

n n
1 T
Mmax. W(a) = Z oy — 5 Z Q0 YiY X5 Xy
=1 i=1,7=1
n
subject to «; > 0O, > oy =0
i=1 .
Properties of a; when we introduce The result when we differentiate the
the Lagrange multipliers original Lagrangian w.r.t. b
The Dual Problem
Mmax. W(a) = Z oy — 5 Z Q0 YiY X5 Xy
=1 i=1,7=1
n
subject to a; >0, > a;y; =0

i=1
= This is a quadratic programming (QP) problem
= A global maximum of a, can always be found
n
=W can be recovered by w = Z oYX,

=1




Characteristics of the Solution

= Many of the a, are zero
=W is a linear combination of a small number of data points

= This “sparse” representation can be viewed as data
compression as in the construction of knn classifier

= X; with non-zero a, are called support vectors (SV)
= The decision boundary is determined only by the SV
=Let ¢ (=1, ..., 5) be the indices of the s support vectors.
We can write w = Z?:l Yt Xt
= For testing with a new data z
«Compute W'z +b= 2 5=1 QY (Xt:l;.z) +b and
classify z as class 1 if the sum is positive, and class 2
otherwise

= Note: w need not be formed explicitly

The Quadratic Programming Problem

= Many approaches have been proposed
= Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/gp/ap.html)
= Most are “interior-point” methods
= Start with an initial solution that can violate the constraints
= Improve this solution by optimizing the objective function
and/or reducing the amount of constraint violation
= For SVM, sequential minimal optimization (SMO) seems
to be the most popular
= A QP with two variables is trivial to solve
= Each iteration of SMO picks a pair of (a;,a;) and solve the
QP with these two variables; repeat until convergence
= In practice, we can just regard the QP solver as a
“black-box” without bothering how it works
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A Geometrical Interpretation

A Class 2

Class 1 a;=0 wlix+b=0

Non-linearly Separable Problems

= We allow “error” x; in classification; it is based on the
output of the discriminant function wx+b
= X; approximates the number of misclassified samples

11



Non-Linearly Separable Data

Var,

Introduce slagk
variables

Allow some
instances to fall
within the margin,
but penalize them

Formulating the Optimization Problem

Var,

Constraint becomes.;
y,(wex, + );T—El., Vx,

£=0

Objective function
penalizes for
misclassified instances
and those within the
margin

N T
mlnE”w” + Cz &
C trades-off margin

width and
misclassifications
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Soft Margin Hyperplane

= If we minimize a,x;, x; can be computed by
wix;+b>1-¢ yi =1
wix; +b< -14¢ y=-1
& >0 Vi
= X; are “slack variables” in optimization
= Note that x,=0 if there is no error for x;
= X; is an upper bound of the number of errors
= We want to minimize %HWHQ +CYr &

= C: tradeoff parameter between error and margin
= The optimization problem becomes
Minimize 3||w|]? + C Y11 &
subject to y;(wix;+b) >1-¢, & >0

Robustness of Soft vs Hard Margin SVMs

A
Var, W Var,

Soft Margin SVN Hard Margin SVN
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Soft vs Hard Margin SVM

= Soft-Margin always have a solution
= Soft-Margin is more robust to outliers
= Smoother surfaces (in the non-linear case)

= Hard-Margin does not require to guess the cost
parameter (requires no parameters at all)

Linear Classifiers in High-Dimensional Spaces

Constructed

Var, Feature 2

Var -
2 Constructed

-_.. = Feature 1

Find function ®(x) to map
to a different space

v




Transforming the Data

A

Input space

f@)
) f@)
fa@) f @)
Feature space

Note: feature space is of higher dimension
than the input space in practice

= Computation in the feature space can be costly because it is
high dimensional

= The feature space is typically infinite-dimensional!
= The kernel trick comes to rescue

The Dual of the SVM Formulation

= Original SVM formulation
= ninequality constraints
= N positivity constraints
= nnumber of & variables

= The (Wolfe) dual of this
problem

= one equality constraint

= npositivity constraints

= nnumber of o variables
(Lagrange multipliers)

= Objective function more
complicated

= NOTICE: Data only appear as
@(x) - @(x;)

.1
minof’ +C 38

st y,(w-®(x)+b)=1-&,Vx,
§ =0

1
ngngga,-ajyiyj (@(x) @(x,) = F ot

st. Cza; =0,Vx,

Eaiyi =0
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The Kernel Trick

= d(x) - ©(x;): means, map data into new space, then take the inner
product of the new vectors

= We can find a function such that: K(x; - x;) = ®(x) - ®(x), i.e., the image
of the inner product of the data is the inner product of the images of the
data

= Then, we do not need to explicitly map the data into the high-
dimensional space to solve the optimization problem (for training)

= How do we classify without explicitly mapping the new instances? Turns
out

sgn(wx + b) = sgn(E a,y,K(x;,x)+b)
where b solves aj(yjzaiyiK(x,,xj) +b-1)=0,

forany j witha, =0

The Kernel Trick

= Recall the SVM optimization problem
n 1 n
max. W(a) = Y a; — 5 > oziozjyiy
i=1 i=1,j=1
n
subject to C' > a; >0, Y a4y, =0
i=1

= The data points only appear as inner product

= As long as we can calculate the inner product in the
feature space, we do not need the mapping explicitly

= Many common geometric operations (angles, distances)
can be expressed by inner products

= Define the kernel function K by

K(x;,%x;) = ¢(x)? p(x5)
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An Example for f (.) and K(.,.)

= Suppose f (.) is given as follows
¢( [gé }) = (1a \/5.1‘1, \/§an CE%, 33%, \/5'7:11'2)
= An inner product in the feature space is

(o[ 33]),([15])) = (1 + 2191 + 2202)°

= So, if we define the kernel function as follows, there is
no need to carry out f (.) explicitly

K(x,y) = (1 + z1y1 + 2oy2)?

= This use of kernel function to avoid carrying out f (.)
explicitly is known as the kernel trick

Kernel Functions

= In practical use of SVM, the user specifies the kernel
function; the transformation f (.) is not explicitly stated
= Given a kernel function K(x;, x;), the transformation f(.)
is given by its eigenfunctions (a concept in functional
analysis)
= Eigenfunctions can be difficult to construct explicitly

= This is why people only specify the kernel function without
worrying about the exact transformation

= Another view: kernel function, being an inner product,
is really a similarity measure between the objects

17



Examples of Kernel Functions

= Polynomial kernel with degree d
K(x,y) = (xTy +1)4
= Radial basis function kernel with width s

K(x,y) = exp(—|[x — y|[?/(20?))

= Closely related to radial basis function neural networks
= The feature space is infinite-dimensional
= Sigmoid with parameter k and q

K(x,y) = tanh(sxly + 0)

= It does not satisfy the Mercer condition on all k and g

Modification Due to Kernel Function

= Change all inner products to kernel functions
= For training,

n 1 n
max. W(a) = Z oy — 5 Z aiajyiijij
Original i=1 i=1,j=1
subject to C > a; >0, > aoy; =0
i=1
n l n
max. W(a) = oy—— ;oYY K (X5, X5
With kernel (@) z; ’ 2@:123'::1 i (i, %;)
function n

subject to C > a; >0, > aoy; =0
i=1
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Modification Due to Kernel Function

= For testing, the new data z is classified as class 1 if £
30, and as class 2 if f <0

S
. W= ) ayXy
Original j=1 s

f= wlzg +b= Z oztjytjxg;z +b
J=1

W = Z atjytj¢(xtj)

With kernel j=1 s
function f=(w,o(z))+b= Z atjyth(th, z)+b
=1
Example

= Suppose we have 5 1D data points
=X, =1, X,=2, X3=4, X,=5, Xs=6, with 1, 2, 6 as class 1 and
4,5as class 2 = y,=1, y,=1, y;=-1, y,=-1, y.=1
= We use the polynomial kernel of degree 2
«K(x,y) = (xy+1)?
=« Cis set to 100
= We first find a; (/=1, ..., 5) by

5 5 5
1
max. Z =5 Z Z a;ayyi (T + 1)?

subject to 100 > o; > 0, Y oyy; =0
=1
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Example

= By using a QP solver, we get
=a,=0, a,=2.5, a;=0, a,=7.333, a;=4.833
= Note that the constraints are indeed satisfied
= The support vectors are {x,=2, X,=5, Xs=6}

= The discriminant function is as yf K(z,zs5)

f(2)
=2.5(1)(2z 4 1)%2 + 7.333(=1)(52 4+ 1)%2 + 4.833(1) (62 + 1)+ b
= 0.666722 — 5.3332 4+ b
= b is recovered by solving f(2)=1 or by f(5)=-1 or by
f(6)=1, as X, and X lie on the(w) ¢(x) + b =1
and x, lies on tte(w)T¢(x) + b = —1
= All three give b=9 == f(z) = 0.666722 — 5.333z + 9

Example

Value of discriminant function

class 1 class 2 4ass 1

\:

v
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The Mercer Condition

= Is there a mapping ®(x) for any symmetric function
K(x,2)? No

= The SVM dual formulation requires calculation K(x; , x;)
for each pair of training instances. The array G; = K(x;,
x;) is called the Gram matrix

= There is a feature space ®(x) when the Kernel is such
that Gis always semi-positive definite (Mercer condition)

Why SVM Work?

= The feature space is often very high dimensional. Why
don’t we have the curse of dimensionality?

= A classifier in a high-dimensional space has many
parameters and is hard to estimate

= Vapnik argues that the fundamental problem is not the
number of parameters to be estimated. Rather, the
problem is about the flexibility of a classifier

= Typically, a classifier with many parameters is very
flexible, but there are also exceptions
= Let x,=10' where i ranges from 1 to n. The classifier

y = sign(sin(az)) can dlassify all x, correctly for all
possible combination of class labels on x;

= This 1-parameter classifier is very flexible

21



Why SVM works?

= Vapnik argues that the flexibility of a classifier should
not be characterized by the number of parameters, but
by the flexibility (capacity) of a classifier

= This is formalized by the “"VC-dimension” of a classifier
= Consider a linear classifier in two-dimensional space

= If we have three training data points, no matter how
those points are labeled, we can classify them perfectly

© Y 9) (@) (]
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