
1

Support Vector Machines

[With notes from Law, Tang, Aliferis, Tsamardinos, Tan]

 Linear Classifiers
fx

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you
classify this data?

w x
+ b=0

w x + b<0

w x + b>0

2

 Linear Classifiers
fx

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you
classify this data?

 Linear Classifiers
fx

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you
classify this data?

Misclassified
 to +1 class

3

fx

a

y

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Define the margin
of a linear
classifier as the
width that the
boundary could
be increased by
before hitting a
datapoint.

Classifier Margin

fx

a

y

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Define the margin
of a linear
classifier as the
width that the
boundary could
be increased by
before hitting a
datapoint.

Maximum Margin
fx

a

y

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

The maximum margin
linear classifier is the
linear classifier with
the, um, maximum
margin.

This is the simplest
kind of SVM (Called
an LSVM)Linear SVM

Support Vectors
are those
datapoints that
the margin
pushes up
against

1. Maximizing the margin is good according
to intuition and PAC theory

2. Implies that only support vectors are
important; other training examples are
ignorable.

3. Empirically it works very very well.

4

Support Vector Machines
B
1

b
11

b
12

0=+• bxw
rr

1!=+• bxw
rr 1+=+• bxw

rr

!
"
#

$%+•$

&+•
=

1bxw if1

1bxw if1
)(rr

rr
r
xf 2||||

2
 Margin

w
r=

Examples are;

(x1,..,xn,y) with
y∈{-1.1}

Maximizing the Margin

Var1

Var2

Margin
Width

Margin
Width

IDEA 1: Select the
separating
hyperplane that
maximizes the
margin!

5

Support Vectors

Var1

Var2

Margin
Width

Support Vectors

Setting Up the Optimization Problem

Var1

Var2kbxw !=+"
rr

kbxw =+!
rr

0=+! bxw
rr

k
k

w
r

The width of the
margin is:

2 k

w

So, the problem is:

2
max

. . () , of class 1

() , of class 2

k

w

s t w x b k x

w x b k x

! + " #

! + $ % #

6

Setting Up the Optimization Problem

Var1

Var21w x b! + = "
r r

1w x b! + =
r r

0=+! bxw
rr

1
1

w
r

There is a scale and
unit for data so that
k=1. Then problem
becomes:

2
max

. . () 1, of class 1

() 1, of class 2

w

s t w x b x

w x b x

! + " #

! + $ % #

Finding the Decision Boundary

Let {x1, ..., xn} be our data set and let yi Î {1,-1} be
the class label of xi

The decision boundary should classify all points
correctly Þ

The decision boundary can be found by solving the
following constrained optimization problem

This is a constrained optimization problem. Solving it
requires some new tools
 Feel free to ignore the following several slides; what is
important is the constrained optimization problem above

7

Recap of Constrained Optimization

Suppose we want to: minimize f(x) subject to g(x) = 0
A necessary condition for x0 to be a solution:

 a: the Lagrange multiplier

For multiple constraints gi(x) = 0, i=1, …, m, we need a
Lagrange multiplier a i for each of the constraints

Recap of Constrained Optimization

The case for inequality constraint gi(x) ≤ 0 is similar,
except that the Lagrange multiplier a i should be positive

 If x0 is a solution to the constrained optimization
problem

There must exist a i³ 0 for i=1, …, m such that x0 satisfy

The function is also known as the
Lagrangrian; we want to set its gradient to 0

8

Back to the Original Problem

The Lagrangian is

 Note that ||w||2 = wTw

 Setting the gradient of w.r.t. w and b to zero, we
have

The Dual Problem

 If we substitute to , we have

Note that

This is a function of a i only

9

The Dual Problem

The new objective function is in terms of a i only

 It is known as the dual problem: if we know w, we
know all a i; if we know all a i, we know w

The original problem is known as the primal problem
The objective function of the dual problem needs to be
maximized!

The dual problem is therefore:

Properties of a i when we introduce
the Lagrange multipliers

The result when we differentiate the
original Lagrangian w.r.t. b

The Dual Problem

This is a quadratic programming (QP) problem
 A global maximum of a i can always be found

w can be recovered by

10

Characteristics of the Solution

Many of the a i are zero
w is a linear combination of a small number of data points
 This “sparse” representation can be viewed as data
compression as in the construction of knn classifier

xi with non-zero a i are called support vectors (SV)
 The decision boundary is determined only by the SV
 Let tj (j=1, ..., s) be the indices of the s support vectors.
We can write

For testing with a new data z

 Compute and
classify z as class 1 if the sum is positive, and class 2
otherwise

 Note: w need not be formed explicitly

The Quadratic Programming Problem

Many approaches have been proposed
 Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html)

Most are “interior-point” methods
 Start with an initial solution that can violate the constraints
 Improve this solution by optimizing the objective function
and/or reducing the amount of constraint violation

For SVM, sequential minimal optimization (SMO) seems
to be the most popular
 A QP with two variables is trivial to solve
 Each iteration of SMO picks a pair of (a i,aj) and solve the
QP with these two variables; repeat until convergence

 In practice, we can just regard the QP solver as a
“black-box” without bothering how it works

11

a6=1.4

A Geometrical Interpretation

Class 1

Class 2

a1=0.8

a2=0

a3=0

a4=0

a5=0
a7=0

a8=0.6

a9=0

a10=0

Non-linearly Separable Problems

We allow “error” xi in classification; it is based on the
output of the discriminant function wTx+b

 xi approximates the number of misclassified samples

Class 1

Class 2

12

Non-Linearly Separable Data

i
!

Var1

Var21w x b! + = "
r r

1w x b! + =
r r

0=+! bxw
rr

1
1

w
r

i
!

Introduce slack
variables

Allow some
instances to fall
within the margin,
but penalize them

i
!

Formulating the Optimization Problem

i
!

Var1

Var21w x b! + = "
r r

1w x b! + =
r r

0=+! bxw
rr

1
1

w
r

i
!

Constraint becomes :

Objective function
penalizes for
misclassified instances
and those within the
margin

C trades-off margin
width and
misclassifications

() 1 ,

0

i i i i

i

y w x b x!

!

" + # $ %

#

21
min

2
i

i

w C !+ "

13

Soft Margin Hyperplane

 If we minimize å ixi, xi can be computed by

xi are “slack variables” in optimization
 Note that xi=0 if there is no error for xi

xi is an upper bound of the number of errors

We want to minimize

 C : tradeoff parameter between error and margin

The optimization problem becomes

Robustness of Soft vs Hard Margin SVMs

i
!

Var1

Var2

0=+! bxw
rr

ξi

Var1

Var20=+! bxw
rr

Soft Margin SVN Hard Margin SVN

14

Soft vs Hard Margin SVM

Soft-Margin always have a solution
Soft-Margin is more robust to outliers

 Smoother surfaces (in the non-linear case)

Hard-Margin does not require to guess the cost
parameter (requires no parameters at all)

Linear Classifiers in High-Dimensional Spaces

Var1

Var2 Constructed
Feature 1

Find function Φ(x) to map
to a different space

Constructed
Feature 2

15

Transforming the Data

Computation in the feature space can be costly because it is
high dimensional
 The feature space is typically infinite-dimensional!

The kernel trick comes to rescue

f ()

f ()

f ()
f ()f ()

f ()

f ()f ()

f (.) f ()

f ()

f ()
f ()
f ()

f ()

f ()

f ()
f () f ()

Feature spaceInput space
Note: feature space is of higher dimension
than the input space in practice

The Dual of the SVM Formulation

 Original SVM formulation
 n inequality constraints
 n positivity constraints
 n number of ξ variables

 The (Wolfe) dual of this
problem
 one equality constraint
 n positivity constraints
 n number of α variables

(Lagrange multipliers)
 Objective function more

complicated

 NOTICE: Data only appear as
Φ(xi) ⋅ Φ(xj)

0

 ,1))((..

!

"#!+$%

i

iii xbxwyts

&

&

!+
i

i
bw

Cw "
2

, 2

1
min

! =

"##

i

ii

i

y

xts

0

 ,0C .. i

$

$

! !"#$#
ji i

ijijiji
a

xxyy
i ,

))()((
2

1
min %%%

16

The Kernel Trick
 Φ(xi) ⋅ Φ(xj): means, map data into new space, then take the inner

product of the new vectors
 We can find a function such that: K(xi ⋅ xj) = Φ(xi) ⋅ Φ(xj), i.e., the image

of the inner product of the data is the inner product of the images of the
data

 Then, we do not need to explicitly map the data into the high-
dimensional space to solve the optimization problem (for training)

 How do we classify without explicitly mapping the new instances? Turns
out

0 withany for

 ,0)1),((solves where

)),(sgn()sgn(

!

="+

+=+

#

#

j

i

jiiijj

i

iii

j

bxxKyyb

bxxKybwx

$

$$

$

The Kernel Trick

Recall the SVM optimization problem

The data points only appear as inner product
As long as we can calculate the inner product in the
feature space, we do not need the mapping explicitly

Many common geometric operations (angles, distances)
can be expressed by inner products

Define the kernel function K by

17

An Example for f (.) and K(.,.)

Suppose f (.) is given as follows

An inner product in the feature space is

So, if we define the kernel function as follows, there is
no need to carry out f (.) explicitly

This use of kernel function to avoid carrying out f (.)
explicitly is known as the kernel trick

Kernel Functions

 In practical use of SVM, the user specifies the kernel
function; the transformation f (.) is not explicitly stated

Given a kernel function K(xi, xj), the transformation f (.)
is given by its eigenfunctions (a concept in functional
analysis)
 Eigenfunctions can be difficult to construct explicitly
 This is why people only specify the kernel function without
worrying about the exact transformation

Another view: kernel function, being an inner product,
is really a similarity measure between the objects

18

Examples of Kernel Functions

Polynomial kernel with degree d

Radial basis function kernel with width s

 Closely related to radial basis function neural networks
 The feature space is infinite-dimensional

Sigmoid with parameter k and q

 It does not satisfy the Mercer condition on all k and q

Modification Due to Kernel Function

Change all inner products to kernel functions
For training,

Original

With kernel
function

19

Modification Due to Kernel Function

For testing, the new data z is classified as class 1 if f
³ 0, and as class 2 if f <0

Original

With kernel
function

Example

Suppose we have 5 1D data points
 x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 and
4, 5 as class 2 ⇒ y1=1, y2=1, y3=-1, y4=-1, y5=1

We use the polynomial kernel of degree 2
 K(x,y) = (xy+1)2

 C is set to 100
We first find a i (i=1, …, 5) by

20

Example

By using a QP solver, we get
 a1=0, a2=2.5, a3=0, a4=7.333, a5=4.833

 Note that the constraints are indeed satisfied
 The support vectors are {x2=2, x4=5, x5=6}

The discriminant function is

b is recovered by solving f(2)=1 or by f(5)=-1 or by
f(6)=1, as x2 and x5 lie on the line
and x4 lies on the line

All three give b=9

Example

Value of discriminant function

1 2 4 5 6

class 2 class 1class 1

21

The Mercer Condition

 Is there a mapping Φ(x) for any symmetric function
K(x,z)? No

The SVM dual formulation requires calculation K(xi , xj)
for each pair of training instances. The array Gij = K(xi ,
xj) is called the Gram matrix

There is a feature space Φ(x) when the Kernel is such
that G is always semi-positive definite (Mercer condition)

Why SVM Work?

The feature space is often very high dimensional. Why
don’t we have the curse of dimensionality?

A classifier in a high-dimensional space has many
parameters and is hard to estimate

Vapnik argues that the fundamental problem is not the
number of parameters to be estimated. Rather, the
problem is about the flexibility of a classifier

Typically, a classifier with many parameters is very
flexible, but there are also exceptions
 Let xi=10i where i ranges from 1 to n. The classifier

can classify all xi correctly for all
possible combination of class labels on xi

 This 1-parameter classifier is very flexible

22

Why SVM works?

Vapnik argues that the flexibility of a classifier should
not be characterized by the number of parameters, but
by the flexibility (capacity) of a classifier
 This is formalized by the “VC-dimension” of a classifier

Consider a linear classifier in two-dimensional space
 If we have three training data points, no matter how
those points are labeled, we can classify them perfectly

